Loading…

Evaluate the performance of an accelerated initial stiffness method in three dimensional finite element analysis

Newton’s method is a commonly used algorithm for elasto-plastic finite element analysis and has three common variations: the full Newton–Raphson method, the modified Newton–Raphson method and the initial stiffness method. The Newton–Raphson methods can converge to the solution in a small number of i...

Full description

Saved in:
Bibliographic Details
Published in:Computers and geotechnics 2014-10, Vol.62, p.293-303
Main Authors: Dang, Hoang Kien, Yacoub, Thamer, Curran, John, Visser, Matthew, Wai, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-35dee24867d94e203119733169c227fd35f6525beb2b8405e3bf87ac20a14f913
cites cdi_FETCH-LOGICAL-c375t-35dee24867d94e203119733169c227fd35f6525beb2b8405e3bf87ac20a14f913
container_end_page 303
container_issue
container_start_page 293
container_title Computers and geotechnics
container_volume 62
creator Dang, Hoang Kien
Yacoub, Thamer
Curran, John
Visser, Matthew
Wai, Daniel
description Newton’s method is a commonly used algorithm for elasto-plastic finite element analysis and has three common variations: the full Newton–Raphson method, the modified Newton–Raphson method and the initial stiffness method. The Newton–Raphson methods can converge to the solution in a small number of iterations when the system is stable; however, the methods can be quite computationally expensive in some types of problems, for example where the tangent stiffness matrix is unsymmetric or the plasticity is highly localized. The initial stiffness method is robust in those cases but requires a larger number of iterations. This prompted the formulation of many acceleration techniques in literature. In this paper, those techniques will be briefly discussed. This will be followed by the development of a modified acceleration technique for the initial stiffness method. The performance of the modified accelerated initial stiffness method will be examined in elasto-plastic analyses, using both direct and iterative matrix solvers. The results will be compared – in terms of the required number of iterations and the computation time – with an existing accelerated initial stiffness method, the non-accelerated initial stiffness method and the Newton–Raphson tangent stiffness method.
doi_str_mv 10.1016/j.compgeo.2014.07.014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808370343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266352X14001487</els_id><sourcerecordid>1808370343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-35dee24867d94e203119733169c227fd35f6525beb2b8405e3bf87ac20a14f913</originalsourceid><addsrcrecordid>eNqFUctqwzAQFKWFpmk_oaBjL3b1sC37VEpIHxDopYXehCyvGgXbciUl0L-vTHLPaWB3ZpjdQeiekpwSWj3ucu2G6QdczggtciLyBBdoQWvBM1FxfokWhFVVxkv2fY1uQtiRpGvqZoGm9UH1exUBxy3gCbxxflCjBuwMViNWWkMPPhE6bEcbrepxiNaYEULAA8StmxdJ7QFwZwcYg3VjYpmZDjip0ywmL9X_BRtu0ZVRfYC7Ey7R18v6c_WWbT5e31fPm0xzUcYUtQNgRV2JrimAEU5pIzhPqTVjwnS8NFXJyhZa1tYFKYG3phZKM6JoYRrKl-jh6Dt597uHEOVgQ7qlVyO4fZC0JjUXhBf8PLUqGEsB-OxaHqnauxA8GDl5Oyj_JymRcxlyJ09lyLkMSYRMkHRPRx2kkw8WvAzaQnpzZz3oKDtnzzj8A9Mulp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642231131</pqid></control><display><type>article</type><title>Evaluate the performance of an accelerated initial stiffness method in three dimensional finite element analysis</title><source>ScienceDirect Freedom Collection</source><creator>Dang, Hoang Kien ; Yacoub, Thamer ; Curran, John ; Visser, Matthew ; Wai, Daniel</creator><creatorcontrib>Dang, Hoang Kien ; Yacoub, Thamer ; Curran, John ; Visser, Matthew ; Wai, Daniel</creatorcontrib><description>Newton’s method is a commonly used algorithm for elasto-plastic finite element analysis and has three common variations: the full Newton–Raphson method, the modified Newton–Raphson method and the initial stiffness method. The Newton–Raphson methods can converge to the solution in a small number of iterations when the system is stable; however, the methods can be quite computationally expensive in some types of problems, for example where the tangent stiffness matrix is unsymmetric or the plasticity is highly localized. The initial stiffness method is robust in those cases but requires a larger number of iterations. This prompted the formulation of many acceleration techniques in literature. In this paper, those techniques will be briefly discussed. This will be followed by the development of a modified acceleration technique for the initial stiffness method. The performance of the modified accelerated initial stiffness method will be examined in elasto-plastic analyses, using both direct and iterative matrix solvers. The results will be compared – in terms of the required number of iterations and the computation time – with an existing accelerated initial stiffness method, the non-accelerated initial stiffness method and the Newton–Raphson tangent stiffness method.</description><identifier>ISSN: 0266-352X</identifier><identifier>EISSN: 1873-7633</identifier><identifier>DOI: 10.1016/j.compgeo.2014.07.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Accelerated initial stiffness ; Acceleration ; Computation ; Finite element method ; Geotechnical engineering ; Iterative methods ; Iterative solver ; Mathematical analysis ; Newton-Raphson method ; Numerical modeling ; Stiffness ; Tangents</subject><ispartof>Computers and geotechnics, 2014-10, Vol.62, p.293-303</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-35dee24867d94e203119733169c227fd35f6525beb2b8405e3bf87ac20a14f913</citedby><cites>FETCH-LOGICAL-c375t-35dee24867d94e203119733169c227fd35f6525beb2b8405e3bf87ac20a14f913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dang, Hoang Kien</creatorcontrib><creatorcontrib>Yacoub, Thamer</creatorcontrib><creatorcontrib>Curran, John</creatorcontrib><creatorcontrib>Visser, Matthew</creatorcontrib><creatorcontrib>Wai, Daniel</creatorcontrib><title>Evaluate the performance of an accelerated initial stiffness method in three dimensional finite element analysis</title><title>Computers and geotechnics</title><description>Newton’s method is a commonly used algorithm for elasto-plastic finite element analysis and has three common variations: the full Newton–Raphson method, the modified Newton–Raphson method and the initial stiffness method. The Newton–Raphson methods can converge to the solution in a small number of iterations when the system is stable; however, the methods can be quite computationally expensive in some types of problems, for example where the tangent stiffness matrix is unsymmetric or the plasticity is highly localized. The initial stiffness method is robust in those cases but requires a larger number of iterations. This prompted the formulation of many acceleration techniques in literature. In this paper, those techniques will be briefly discussed. This will be followed by the development of a modified acceleration technique for the initial stiffness method. The performance of the modified accelerated initial stiffness method will be examined in elasto-plastic analyses, using both direct and iterative matrix solvers. The results will be compared – in terms of the required number of iterations and the computation time – with an existing accelerated initial stiffness method, the non-accelerated initial stiffness method and the Newton–Raphson tangent stiffness method.</description><subject>Accelerated initial stiffness</subject><subject>Acceleration</subject><subject>Computation</subject><subject>Finite element method</subject><subject>Geotechnical engineering</subject><subject>Iterative methods</subject><subject>Iterative solver</subject><subject>Mathematical analysis</subject><subject>Newton-Raphson method</subject><subject>Numerical modeling</subject><subject>Stiffness</subject><subject>Tangents</subject><issn>0266-352X</issn><issn>1873-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUctqwzAQFKWFpmk_oaBjL3b1sC37VEpIHxDopYXehCyvGgXbciUl0L-vTHLPaWB3ZpjdQeiekpwSWj3ucu2G6QdczggtciLyBBdoQWvBM1FxfokWhFVVxkv2fY1uQtiRpGvqZoGm9UH1exUBxy3gCbxxflCjBuwMViNWWkMPPhE6bEcbrepxiNaYEULAA8StmxdJ7QFwZwcYg3VjYpmZDjip0ywmL9X_BRtu0ZVRfYC7Ey7R18v6c_WWbT5e31fPm0xzUcYUtQNgRV2JrimAEU5pIzhPqTVjwnS8NFXJyhZa1tYFKYG3phZKM6JoYRrKl-jh6Dt597uHEOVgQ7qlVyO4fZC0JjUXhBf8PLUqGEsB-OxaHqnauxA8GDl5Oyj_JymRcxlyJ09lyLkMSYRMkHRPRx2kkw8WvAzaQnpzZz3oKDtnzzj8A9Mulp0</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Dang, Hoang Kien</creator><creator>Yacoub, Thamer</creator><creator>Curran, John</creator><creator>Visser, Matthew</creator><creator>Wai, Daniel</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20141001</creationdate><title>Evaluate the performance of an accelerated initial stiffness method in three dimensional finite element analysis</title><author>Dang, Hoang Kien ; Yacoub, Thamer ; Curran, John ; Visser, Matthew ; Wai, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-35dee24867d94e203119733169c227fd35f6525beb2b8405e3bf87ac20a14f913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accelerated initial stiffness</topic><topic>Acceleration</topic><topic>Computation</topic><topic>Finite element method</topic><topic>Geotechnical engineering</topic><topic>Iterative methods</topic><topic>Iterative solver</topic><topic>Mathematical analysis</topic><topic>Newton-Raphson method</topic><topic>Numerical modeling</topic><topic>Stiffness</topic><topic>Tangents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Hoang Kien</creatorcontrib><creatorcontrib>Yacoub, Thamer</creatorcontrib><creatorcontrib>Curran, John</creatorcontrib><creatorcontrib>Visser, Matthew</creatorcontrib><creatorcontrib>Wai, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Computers and geotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Hoang Kien</au><au>Yacoub, Thamer</au><au>Curran, John</au><au>Visser, Matthew</au><au>Wai, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluate the performance of an accelerated initial stiffness method in three dimensional finite element analysis</atitle><jtitle>Computers and geotechnics</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>62</volume><spage>293</spage><epage>303</epage><pages>293-303</pages><issn>0266-352X</issn><eissn>1873-7633</eissn><abstract>Newton’s method is a commonly used algorithm for elasto-plastic finite element analysis and has three common variations: the full Newton–Raphson method, the modified Newton–Raphson method and the initial stiffness method. The Newton–Raphson methods can converge to the solution in a small number of iterations when the system is stable; however, the methods can be quite computationally expensive in some types of problems, for example where the tangent stiffness matrix is unsymmetric or the plasticity is highly localized. The initial stiffness method is robust in those cases but requires a larger number of iterations. This prompted the formulation of many acceleration techniques in literature. In this paper, those techniques will be briefly discussed. This will be followed by the development of a modified acceleration technique for the initial stiffness method. The performance of the modified accelerated initial stiffness method will be examined in elasto-plastic analyses, using both direct and iterative matrix solvers. The results will be compared – in terms of the required number of iterations and the computation time – with an existing accelerated initial stiffness method, the non-accelerated initial stiffness method and the Newton–Raphson tangent stiffness method.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compgeo.2014.07.014</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-352X
ispartof Computers and geotechnics, 2014-10, Vol.62, p.293-303
issn 0266-352X
1873-7633
language eng
recordid cdi_proquest_miscellaneous_1808370343
source ScienceDirect Freedom Collection
subjects Accelerated initial stiffness
Acceleration
Computation
Finite element method
Geotechnical engineering
Iterative methods
Iterative solver
Mathematical analysis
Newton-Raphson method
Numerical modeling
Stiffness
Tangents
title Evaluate the performance of an accelerated initial stiffness method in three dimensional finite element analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluate%20the%20performance%20of%20an%20accelerated%20initial%20stiffness%20method%20in%20three%20dimensional%20finite%20element%20analysis&rft.jtitle=Computers%20and%20geotechnics&rft.au=Dang,%20Hoang%20Kien&rft.date=2014-10-01&rft.volume=62&rft.spage=293&rft.epage=303&rft.pages=293-303&rft.issn=0266-352X&rft.eissn=1873-7633&rft_id=info:doi/10.1016/j.compgeo.2014.07.014&rft_dat=%3Cproquest_cross%3E1808370343%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-35dee24867d94e203119733169c227fd35f6525beb2b8405e3bf87ac20a14f913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1642231131&rft_id=info:pmid/&rfr_iscdi=true