Loading…
Evaluate the performance of an accelerated initial stiffness method in three dimensional finite element analysis
Newton’s method is a commonly used algorithm for elasto-plastic finite element analysis and has three common variations: the full Newton–Raphson method, the modified Newton–Raphson method and the initial stiffness method. The Newton–Raphson methods can converge to the solution in a small number of i...
Saved in:
Published in: | Computers and geotechnics 2014-10, Vol.62, p.293-303 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-35dee24867d94e203119733169c227fd35f6525beb2b8405e3bf87ac20a14f913 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-35dee24867d94e203119733169c227fd35f6525beb2b8405e3bf87ac20a14f913 |
container_end_page | 303 |
container_issue | |
container_start_page | 293 |
container_title | Computers and geotechnics |
container_volume | 62 |
creator | Dang, Hoang Kien Yacoub, Thamer Curran, John Visser, Matthew Wai, Daniel |
description | Newton’s method is a commonly used algorithm for elasto-plastic finite element analysis and has three common variations: the full Newton–Raphson method, the modified Newton–Raphson method and the initial stiffness method. The Newton–Raphson methods can converge to the solution in a small number of iterations when the system is stable; however, the methods can be quite computationally expensive in some types of problems, for example where the tangent stiffness matrix is unsymmetric or the plasticity is highly localized. The initial stiffness method is robust in those cases but requires a larger number of iterations. This prompted the formulation of many acceleration techniques in literature. In this paper, those techniques will be briefly discussed. This will be followed by the development of a modified acceleration technique for the initial stiffness method. The performance of the modified accelerated initial stiffness method will be examined in elasto-plastic analyses, using both direct and iterative matrix solvers. The results will be compared – in terms of the required number of iterations and the computation time – with an existing accelerated initial stiffness method, the non-accelerated initial stiffness method and the Newton–Raphson tangent stiffness method. |
doi_str_mv | 10.1016/j.compgeo.2014.07.014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808370343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266352X14001487</els_id><sourcerecordid>1808370343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-35dee24867d94e203119733169c227fd35f6525beb2b8405e3bf87ac20a14f913</originalsourceid><addsrcrecordid>eNqFUctqwzAQFKWFpmk_oaBjL3b1sC37VEpIHxDopYXehCyvGgXbciUl0L-vTHLPaWB3ZpjdQeiekpwSWj3ucu2G6QdczggtciLyBBdoQWvBM1FxfokWhFVVxkv2fY1uQtiRpGvqZoGm9UH1exUBxy3gCbxxflCjBuwMViNWWkMPPhE6bEcbrepxiNaYEULAA8StmxdJ7QFwZwcYg3VjYpmZDjip0ywmL9X_BRtu0ZVRfYC7Ey7R18v6c_WWbT5e31fPm0xzUcYUtQNgRV2JrimAEU5pIzhPqTVjwnS8NFXJyhZa1tYFKYG3phZKM6JoYRrKl-jh6Dt597uHEOVgQ7qlVyO4fZC0JjUXhBf8PLUqGEsB-OxaHqnauxA8GDl5Oyj_JymRcxlyJ09lyLkMSYRMkHRPRx2kkw8WvAzaQnpzZz3oKDtnzzj8A9Mulp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642231131</pqid></control><display><type>article</type><title>Evaluate the performance of an accelerated initial stiffness method in three dimensional finite element analysis</title><source>ScienceDirect Freedom Collection</source><creator>Dang, Hoang Kien ; Yacoub, Thamer ; Curran, John ; Visser, Matthew ; Wai, Daniel</creator><creatorcontrib>Dang, Hoang Kien ; Yacoub, Thamer ; Curran, John ; Visser, Matthew ; Wai, Daniel</creatorcontrib><description>Newton’s method is a commonly used algorithm for elasto-plastic finite element analysis and has three common variations: the full Newton–Raphson method, the modified Newton–Raphson method and the initial stiffness method. The Newton–Raphson methods can converge to the solution in a small number of iterations when the system is stable; however, the methods can be quite computationally expensive in some types of problems, for example where the tangent stiffness matrix is unsymmetric or the plasticity is highly localized. The initial stiffness method is robust in those cases but requires a larger number of iterations. This prompted the formulation of many acceleration techniques in literature. In this paper, those techniques will be briefly discussed. This will be followed by the development of a modified acceleration technique for the initial stiffness method. The performance of the modified accelerated initial stiffness method will be examined in elasto-plastic analyses, using both direct and iterative matrix solvers. The results will be compared – in terms of the required number of iterations and the computation time – with an existing accelerated initial stiffness method, the non-accelerated initial stiffness method and the Newton–Raphson tangent stiffness method.</description><identifier>ISSN: 0266-352X</identifier><identifier>EISSN: 1873-7633</identifier><identifier>DOI: 10.1016/j.compgeo.2014.07.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Accelerated initial stiffness ; Acceleration ; Computation ; Finite element method ; Geotechnical engineering ; Iterative methods ; Iterative solver ; Mathematical analysis ; Newton-Raphson method ; Numerical modeling ; Stiffness ; Tangents</subject><ispartof>Computers and geotechnics, 2014-10, Vol.62, p.293-303</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-35dee24867d94e203119733169c227fd35f6525beb2b8405e3bf87ac20a14f913</citedby><cites>FETCH-LOGICAL-c375t-35dee24867d94e203119733169c227fd35f6525beb2b8405e3bf87ac20a14f913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dang, Hoang Kien</creatorcontrib><creatorcontrib>Yacoub, Thamer</creatorcontrib><creatorcontrib>Curran, John</creatorcontrib><creatorcontrib>Visser, Matthew</creatorcontrib><creatorcontrib>Wai, Daniel</creatorcontrib><title>Evaluate the performance of an accelerated initial stiffness method in three dimensional finite element analysis</title><title>Computers and geotechnics</title><description>Newton’s method is a commonly used algorithm for elasto-plastic finite element analysis and has three common variations: the full Newton–Raphson method, the modified Newton–Raphson method and the initial stiffness method. The Newton–Raphson methods can converge to the solution in a small number of iterations when the system is stable; however, the methods can be quite computationally expensive in some types of problems, for example where the tangent stiffness matrix is unsymmetric or the plasticity is highly localized. The initial stiffness method is robust in those cases but requires a larger number of iterations. This prompted the formulation of many acceleration techniques in literature. In this paper, those techniques will be briefly discussed. This will be followed by the development of a modified acceleration technique for the initial stiffness method. The performance of the modified accelerated initial stiffness method will be examined in elasto-plastic analyses, using both direct and iterative matrix solvers. The results will be compared – in terms of the required number of iterations and the computation time – with an existing accelerated initial stiffness method, the non-accelerated initial stiffness method and the Newton–Raphson tangent stiffness method.</description><subject>Accelerated initial stiffness</subject><subject>Acceleration</subject><subject>Computation</subject><subject>Finite element method</subject><subject>Geotechnical engineering</subject><subject>Iterative methods</subject><subject>Iterative solver</subject><subject>Mathematical analysis</subject><subject>Newton-Raphson method</subject><subject>Numerical modeling</subject><subject>Stiffness</subject><subject>Tangents</subject><issn>0266-352X</issn><issn>1873-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUctqwzAQFKWFpmk_oaBjL3b1sC37VEpIHxDopYXehCyvGgXbciUl0L-vTHLPaWB3ZpjdQeiekpwSWj3ucu2G6QdczggtciLyBBdoQWvBM1FxfokWhFVVxkv2fY1uQtiRpGvqZoGm9UH1exUBxy3gCbxxflCjBuwMViNWWkMPPhE6bEcbrepxiNaYEULAA8StmxdJ7QFwZwcYg3VjYpmZDjip0ywmL9X_BRtu0ZVRfYC7Ey7R18v6c_WWbT5e31fPm0xzUcYUtQNgRV2JrimAEU5pIzhPqTVjwnS8NFXJyhZa1tYFKYG3phZKM6JoYRrKl-jh6Dt597uHEOVgQ7qlVyO4fZC0JjUXhBf8PLUqGEsB-OxaHqnauxA8GDl5Oyj_JymRcxlyJ09lyLkMSYRMkHRPRx2kkw8WvAzaQnpzZz3oKDtnzzj8A9Mulp0</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Dang, Hoang Kien</creator><creator>Yacoub, Thamer</creator><creator>Curran, John</creator><creator>Visser, Matthew</creator><creator>Wai, Daniel</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20141001</creationdate><title>Evaluate the performance of an accelerated initial stiffness method in three dimensional finite element analysis</title><author>Dang, Hoang Kien ; Yacoub, Thamer ; Curran, John ; Visser, Matthew ; Wai, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-35dee24867d94e203119733169c227fd35f6525beb2b8405e3bf87ac20a14f913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accelerated initial stiffness</topic><topic>Acceleration</topic><topic>Computation</topic><topic>Finite element method</topic><topic>Geotechnical engineering</topic><topic>Iterative methods</topic><topic>Iterative solver</topic><topic>Mathematical analysis</topic><topic>Newton-Raphson method</topic><topic>Numerical modeling</topic><topic>Stiffness</topic><topic>Tangents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Hoang Kien</creatorcontrib><creatorcontrib>Yacoub, Thamer</creatorcontrib><creatorcontrib>Curran, John</creatorcontrib><creatorcontrib>Visser, Matthew</creatorcontrib><creatorcontrib>Wai, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Computers and geotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Hoang Kien</au><au>Yacoub, Thamer</au><au>Curran, John</au><au>Visser, Matthew</au><au>Wai, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluate the performance of an accelerated initial stiffness method in three dimensional finite element analysis</atitle><jtitle>Computers and geotechnics</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>62</volume><spage>293</spage><epage>303</epage><pages>293-303</pages><issn>0266-352X</issn><eissn>1873-7633</eissn><abstract>Newton’s method is a commonly used algorithm for elasto-plastic finite element analysis and has three common variations: the full Newton–Raphson method, the modified Newton–Raphson method and the initial stiffness method. The Newton–Raphson methods can converge to the solution in a small number of iterations when the system is stable; however, the methods can be quite computationally expensive in some types of problems, for example where the tangent stiffness matrix is unsymmetric or the plasticity is highly localized. The initial stiffness method is robust in those cases but requires a larger number of iterations. This prompted the formulation of many acceleration techniques in literature. In this paper, those techniques will be briefly discussed. This will be followed by the development of a modified acceleration technique for the initial stiffness method. The performance of the modified accelerated initial stiffness method will be examined in elasto-plastic analyses, using both direct and iterative matrix solvers. The results will be compared – in terms of the required number of iterations and the computation time – with an existing accelerated initial stiffness method, the non-accelerated initial stiffness method and the Newton–Raphson tangent stiffness method.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compgeo.2014.07.014</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-352X |
ispartof | Computers and geotechnics, 2014-10, Vol.62, p.293-303 |
issn | 0266-352X 1873-7633 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808370343 |
source | ScienceDirect Freedom Collection |
subjects | Accelerated initial stiffness Acceleration Computation Finite element method Geotechnical engineering Iterative methods Iterative solver Mathematical analysis Newton-Raphson method Numerical modeling Stiffness Tangents |
title | Evaluate the performance of an accelerated initial stiffness method in three dimensional finite element analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluate%20the%20performance%20of%20an%20accelerated%20initial%20stiffness%20method%20in%20three%20dimensional%20finite%20element%20analysis&rft.jtitle=Computers%20and%20geotechnics&rft.au=Dang,%20Hoang%20Kien&rft.date=2014-10-01&rft.volume=62&rft.spage=293&rft.epage=303&rft.pages=293-303&rft.issn=0266-352X&rft.eissn=1873-7633&rft_id=info:doi/10.1016/j.compgeo.2014.07.014&rft_dat=%3Cproquest_cross%3E1808370343%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-35dee24867d94e203119733169c227fd35f6525beb2b8405e3bf87ac20a14f913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1642231131&rft_id=info:pmid/&rfr_iscdi=true |