Loading…

Metal biouptake by actively growing cells of metal-tolerant bacterial strains

Metal uptake potentials of Pseudomonas aeruginosa CA207Ni, Burkholderia cepacia CA96Co, Rhodococcus sp. AL03Ni, and Corynebacterium kutscheri FL108Hg were studied to determine their competence in detoxification of toxic metals during growth. Metabolism-dependent metal biouptake of the bacteria revea...

Full description

Saved in:
Bibliographic Details
Published in:Environmental monitoring and assessment 2015-08, Vol.187 (8), p.525-11, Article 525
Main Authors: Oyetibo, Ganiyu Oladunjoye, Ilori, Matthew Olusoji, Obayori, Oluwafemi Sunday, Amund, Olukayode Oladipo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metal uptake potentials of Pseudomonas aeruginosa CA207Ni, Burkholderia cepacia CA96Co, Rhodococcus sp. AL03Ni, and Corynebacterium kutscheri FL108Hg were studied to determine their competence in detoxification of toxic metals during growth. Metabolism-dependent metal biouptake of the bacteria revealed appreciable uptake of the metals (57–61, 10–30, 23–60, and 10–16 mg g dw −1 of Ni 2+ , Cr 6+ , Co 2+ , and Cd 2+ , respectively) from medium, after initial drop in pH, without lag phase. The bacteria exhibited 95–100 % removal efficiency for the metals from aqueous medium as 21 (±0.8)–84 (±2.0) concentration factors of the metals were transported into the bacterial systems. Passive adsorption onto the cell surfaces occurred within 2-h contact, and afterwards, there was continuous accumulation for 12 days. Biosorption data of the bacteria were only fitted into Langmuir isotherm model when strains AL96Co, CA207Ni, and AL03Ni interacted with Ni 2+ , achieving maximum uptake of 9.87, 2.72, and 2.69 mg g dw −1 , respectively. This study established that the actively growing bacterial strains displayed, at least, 97.0 % (±1.5) continuous active removals of metals upon adsorption. The bacteria would be good candidates for designing bioreactor useful in the detoxification campaign of heavy metal-polluted systems.
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-015-4731-z