Loading…
Simulation of large-scale numerical substructure in real-time dynamic hybrid testing
A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in r...
Saved in:
Published in: | Earthquake Engineering and Engineering Vibration 2014-12, Vol.13 (4), p.599-609 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-e8f6abdb5394627c802a84b17c37115d6eacbb62b913c8db9aec6545b1a85e593 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-e8f6abdb5394627c802a84b17c37115d6eacbb62b913c8db9aec6545b1a85e593 |
container_end_page | 609 |
container_issue | 4 |
container_start_page | 599 |
container_title | Earthquake Engineering and Engineering Vibration |
container_volume | 13 |
creator | Zhu, Fei Wang, Jinting Jin, Feng Zhou, Mengxia Gui, Yao |
description | A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained. |
doi_str_mv | 10.1007/s11803-014-0266-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808373395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665285781</cqvip_id><sourcerecordid>1651457195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-e8f6abdb5394627c802a84b17c37115d6eacbb62b913c8db9aec6545b1a85e593</originalsourceid><addsrcrecordid>eNqFkTtrHDEUhYcQQ_zID0gn4saNbF29VRqT2AFDCtvgTkga7a6WGY0tzRT776PNmhBSONW9xXfO4d7TdV-AXAIh6qoCaMIwAY4JlRKLD90xGMOwIOz5Y9ulAsyk5J-6k1q3hEhOmTzuHh_SuAxuTlNG0woNrqwjrsENEeVljCW1FdXF17ksYV5KRCmjEt2A5zRG1O-yG1NAm50vqUdzrHPK67PuaOWGGj-_zdPu6fu3x5s7fP_z9sfN9T0OnJgZR72SzvdeMMMlVUET6jT3oAJTAKKX0QXvJfUGWNC9Ny4GKbjw4LSIwrDT7uLg-1Km16Vl2zHVEIfB5Tgt1baXaKYYM-L_qBTAhYLf6Pk_6HZaSm6HNIopTsFQ3ig4UKFMtZa4si8lja7sLBC7r8QeKrGtEruvxO6d6UFTG5vXsfzl_I7o61vQZsrr16b7kySloFooDewX7JiZuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1637421924</pqid></control><display><type>article</type><title>Simulation of large-scale numerical substructure in real-time dynamic hybrid testing</title><source>Springer Link</source><creator>Zhu, Fei ; Wang, Jinting ; Jin, Feng ; Zhou, Mengxia ; Gui, Yao</creator><creatorcontrib>Zhu, Fei ; Wang, Jinting ; Jin, Feng ; Zhou, Mengxia ; Gui, Yao</creatorcontrib><description>A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.</description><identifier>ISSN: 1671-3664</identifier><identifier>EISSN: 1993-503X</identifier><identifier>DOI: 10.1007/s11803-014-0266-5</identifier><language>eng</language><publisher>Heidelberg: Institute of Engineering Mechanics, China Earthquake Administration</publisher><subject>Civil Engineering ; Computer programs ; Computer simulation ; Control ; Dynamical Systems ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Finite element analysis ; Finite element method ; Geotechnical Engineering & Applied Earth Sciences ; Mathematical analysis ; Mathematical models ; Seismic engineering ; Signal generation ; Substructures ; Tasks ; Vibration ; 中大型 ; 动力有限元分析 ; 子结构 ; 实时动态 ; 有限元数值 ; 有限元解 ; 有限元计算 ; 混合试验</subject><ispartof>Earthquake Engineering and Engineering Vibration, 2014-12, Vol.13 (4), p.599-609</ispartof><rights>Institute of Engineering Mechanics, China Earthquake Administration and Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-e8f6abdb5394627c802a84b17c37115d6eacbb62b913c8db9aec6545b1a85e593</citedby><cites>FETCH-LOGICAL-c409t-e8f6abdb5394627c802a84b17c37115d6eacbb62b913c8db9aec6545b1a85e593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86651X/86651X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Fei</creatorcontrib><creatorcontrib>Wang, Jinting</creatorcontrib><creatorcontrib>Jin, Feng</creatorcontrib><creatorcontrib>Zhou, Mengxia</creatorcontrib><creatorcontrib>Gui, Yao</creatorcontrib><title>Simulation of large-scale numerical substructure in real-time dynamic hybrid testing</title><title>Earthquake Engineering and Engineering Vibration</title><addtitle>Earthq. Eng. Eng. Vib</addtitle><addtitle>Earthquake Engineering and Engineering Vibration</addtitle><description>A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.</description><subject>Civil Engineering</subject><subject>Computer programs</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Seismic engineering</subject><subject>Signal generation</subject><subject>Substructures</subject><subject>Tasks</subject><subject>Vibration</subject><subject>中大型</subject><subject>动力有限元分析</subject><subject>子结构</subject><subject>实时动态</subject><subject>有限元数值</subject><subject>有限元解</subject><subject>有限元计算</subject><subject>混合试验</subject><issn>1671-3664</issn><issn>1993-503X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkTtrHDEUhYcQQ_zID0gn4saNbF29VRqT2AFDCtvgTkga7a6WGY0tzRT776PNmhBSONW9xXfO4d7TdV-AXAIh6qoCaMIwAY4JlRKLD90xGMOwIOz5Y9ulAsyk5J-6k1q3hEhOmTzuHh_SuAxuTlNG0woNrqwjrsENEeVljCW1FdXF17ksYV5KRCmjEt2A5zRG1O-yG1NAm50vqUdzrHPK67PuaOWGGj-_zdPu6fu3x5s7fP_z9sfN9T0OnJgZR72SzvdeMMMlVUET6jT3oAJTAKKX0QXvJfUGWNC9Ny4GKbjw4LSIwrDT7uLg-1Km16Vl2zHVEIfB5Tgt1baXaKYYM-L_qBTAhYLf6Pk_6HZaSm6HNIopTsFQ3ig4UKFMtZa4si8lja7sLBC7r8QeKrGtEruvxO6d6UFTG5vXsfzl_I7o61vQZsrr16b7kySloFooDewX7JiZuQ</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Zhu, Fei</creator><creator>Wang, Jinting</creator><creator>Jin, Feng</creator><creator>Zhou, Mengxia</creator><creator>Gui, Yao</creator><general>Institute of Engineering Mechanics, China Earthquake Administration</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7SM</scope><scope>7UA</scope></search><sort><creationdate>20141201</creationdate><title>Simulation of large-scale numerical substructure in real-time dynamic hybrid testing</title><author>Zhu, Fei ; Wang, Jinting ; Jin, Feng ; Zhou, Mengxia ; Gui, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-e8f6abdb5394627c802a84b17c37115d6eacbb62b913c8db9aec6545b1a85e593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Civil Engineering</topic><topic>Computer programs</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Seismic engineering</topic><topic>Signal generation</topic><topic>Substructures</topic><topic>Tasks</topic><topic>Vibration</topic><topic>中大型</topic><topic>动力有限元分析</topic><topic>子结构</topic><topic>实时动态</topic><topic>有限元数值</topic><topic>有限元解</topic><topic>有限元计算</topic><topic>混合试验</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Fei</creatorcontrib><creatorcontrib>Wang, Jinting</creatorcontrib><creatorcontrib>Jin, Feng</creatorcontrib><creatorcontrib>Zhou, Mengxia</creatorcontrib><creatorcontrib>Gui, Yao</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><collection>Water Resources Abstracts</collection><jtitle>Earthquake Engineering and Engineering Vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Fei</au><au>Wang, Jinting</au><au>Jin, Feng</au><au>Zhou, Mengxia</au><au>Gui, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of large-scale numerical substructure in real-time dynamic hybrid testing</atitle><jtitle>Earthquake Engineering and Engineering Vibration</jtitle><stitle>Earthq. Eng. Eng. Vib</stitle><addtitle>Earthquake Engineering and Engineering Vibration</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>13</volume><issue>4</issue><spage>599</spage><epage>609</epage><pages>599-609</pages><issn>1671-3664</issn><eissn>1993-503X</eissn><abstract>A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.</abstract><cop>Heidelberg</cop><pub>Institute of Engineering Mechanics, China Earthquake Administration</pub><doi>10.1007/s11803-014-0266-5</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1671-3664 |
ispartof | Earthquake Engineering and Engineering Vibration, 2014-12, Vol.13 (4), p.599-609 |
issn | 1671-3664 1993-503X |
language | eng |
recordid | cdi_proquest_miscellaneous_1808373395 |
source | Springer Link |
subjects | Civil Engineering Computer programs Computer simulation Control Dynamical Systems Earth and Environmental Science Earth Sciences Earthquakes Finite element analysis Finite element method Geotechnical Engineering & Applied Earth Sciences Mathematical analysis Mathematical models Seismic engineering Signal generation Substructures Tasks Vibration 中大型 动力有限元分析 子结构 实时动态 有限元数值 有限元解 有限元计算 混合试验 |
title | Simulation of large-scale numerical substructure in real-time dynamic hybrid testing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20large-scale%20numerical%20substructure%20in%20real-time%20dynamic%20hybrid%20testing&rft.jtitle=Earthquake%20Engineering%20and%20Engineering%20Vibration&rft.au=Zhu,%20Fei&rft.date=2014-12-01&rft.volume=13&rft.issue=4&rft.spage=599&rft.epage=609&rft.pages=599-609&rft.issn=1671-3664&rft.eissn=1993-503X&rft_id=info:doi/10.1007/s11803-014-0266-5&rft_dat=%3Cproquest_cross%3E1651457195%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-e8f6abdb5394627c802a84b17c37115d6eacbb62b913c8db9aec6545b1a85e593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1637421924&rft_id=info:pmid/&rft_cqvip_id=665285781&rfr_iscdi=true |