Loading…
Modes of crustal accretion and their implications for hydrothermal circulation
Hydrothermal convection at mid‐ocean ridges links the ocean's long‐term chemical evolution to solid earth processes, forms hydrothermal ore deposits, and sustains the unique chemosynthetic vent fauna. Yet the depth extent of hydrothermal cooling and the inseparably connected question of how the...
Saved in:
Published in: | Geophysical research letters 2016-02, Vol.43 (3), p.1124-1131 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4383-782d58ee5ac158c59c23df652b568414d2ce386be0b3d78bee839562a6c975c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c4383-782d58ee5ac158c59c23df652b568414d2ce386be0b3d78bee839562a6c975c03 |
container_end_page | 1131 |
container_issue | 3 |
container_start_page | 1124 |
container_title | Geophysical research letters |
container_volume | 43 |
creator | Theissen‐Krah, Sonja Rüpke, Lars H. Hasenclever, Jörg |
description | Hydrothermal convection at mid‐ocean ridges links the ocean's long‐term chemical evolution to solid earth processes, forms hydrothermal ore deposits, and sustains the unique chemosynthetic vent fauna. Yet the depth extent of hydrothermal cooling and the inseparably connected question of how the lower crust accretes remain poorly constrained. Here based on coupled models of crustal accretion and hydrothermal circulation, we provide new insights into which modes of lower crust formation and hydrothermal cooling are thermally viable and most consistent with observations at fast‐spreading ridges. We integrate numerical models with observations of melt lens depth, thermal structure, and melt fraction. Models matching all these observations always require a deep crustal‐scale hydrothermal flow component and less than 50% of the lower crust crystallizing in situ.
Key Points
Coupled mechanical and hydrothermal models solve for different modes of crustal accretion
Hydrothermal fluids circulate deep in the lower crust
A major part of the lower crust (>50%) crystallizes in a shallow melt lens |
doi_str_mv | 10.1002/2015GL067335 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808380044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800489675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4383-782d58ee5ac158c59c23df652b568414d2ce386be0b3d78bee839562a6c975c03</originalsourceid><addsrcrecordid>eNqN0c1KxDAQAOAgCq6rNx-g4MWD1UnS_B1l0VVYFUTPIU1TNkvbrEmL7NvbdT2Ih8XTDDPfDAyD0DmGawxAbghgNl8AF5SyAzTBqihyCSAO0QRAjTkR_BidpLQCAAoUT9DzU6hcykKd2Tik3jSZsTa63ocuM12V9UvnY-bbdeOt2VZTVoeYLTdVDGMvtuOE9dEOzXf3FB3Vpknu7CdO0fv93dvsIV-8zB9nt4vcFlTSXEhSMekcMxYzaZmyhFY1Z6RkXBa4qIh1VPLSQUkrIUvnJFWME8OtEswCnaLL3d51DB-DS71ufbKuaUznwpA0liDpeHpR_IdCIRUXbKQXf-gqDLEbD9GECuAKM8L3KSy4ZHLrRnW1UzaGlKKr9Tr61sSNxqC339K_vzVysuOfvnGbvVbPXxeMKk7pFzzyk3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768586915</pqid></control><display><type>article</type><title>Modes of crustal accretion and their implications for hydrothermal circulation</title><source>Wiley-Blackwell AGU Digital Library</source><creator>Theissen‐Krah, Sonja ; Rüpke, Lars H. ; Hasenclever, Jörg</creator><creatorcontrib>Theissen‐Krah, Sonja ; Rüpke, Lars H. ; Hasenclever, Jörg</creatorcontrib><description>Hydrothermal convection at mid‐ocean ridges links the ocean's long‐term chemical evolution to solid earth processes, forms hydrothermal ore deposits, and sustains the unique chemosynthetic vent fauna. Yet the depth extent of hydrothermal cooling and the inseparably connected question of how the lower crust accretes remain poorly constrained. Here based on coupled models of crustal accretion and hydrothermal circulation, we provide new insights into which modes of lower crust formation and hydrothermal cooling are thermally viable and most consistent with observations at fast‐spreading ridges. We integrate numerical models with observations of melt lens depth, thermal structure, and melt fraction. Models matching all these observations always require a deep crustal‐scale hydrothermal flow component and less than 50% of the lower crust crystallizing in situ.
Key Points
Coupled mechanical and hydrothermal models solve for different modes of crustal accretion
Hydrothermal fluids circulate deep in the lower crust
A major part of the lower crust (>50%) crystallizes in a shallow melt lens</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL067335</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Accretion ; Chemical evolution ; Circulation ; Convection ; Cooling ; Crustal accretion ; Crusts ; Crystallization ; Deposition ; finite elements ; gabbro glacier ; Hydrothermal flow ; Lava ; Lenses ; Magma ; Marine ; Mathematical models ; Melts ; mid‐ocean ridges ; Mineral deposits ; Model matching ; Numerical models ; Oceanic convection ; Oceans ; Organic chemistry ; Ridges ; sheeted sill ; Spreading centres ; Thermal structure</subject><ispartof>Geophysical research letters, 2016-02, Vol.43 (3), p.1124-1131</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4383-782d58ee5ac158c59c23df652b568414d2ce386be0b3d78bee839562a6c975c03</citedby><cites>FETCH-LOGICAL-c4383-782d58ee5ac158c59c23df652b568414d2ce386be0b3d78bee839562a6c975c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL067335$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL067335$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Theissen‐Krah, Sonja</creatorcontrib><creatorcontrib>Rüpke, Lars H.</creatorcontrib><creatorcontrib>Hasenclever, Jörg</creatorcontrib><title>Modes of crustal accretion and their implications for hydrothermal circulation</title><title>Geophysical research letters</title><description>Hydrothermal convection at mid‐ocean ridges links the ocean's long‐term chemical evolution to solid earth processes, forms hydrothermal ore deposits, and sustains the unique chemosynthetic vent fauna. Yet the depth extent of hydrothermal cooling and the inseparably connected question of how the lower crust accretes remain poorly constrained. Here based on coupled models of crustal accretion and hydrothermal circulation, we provide new insights into which modes of lower crust formation and hydrothermal cooling are thermally viable and most consistent with observations at fast‐spreading ridges. We integrate numerical models with observations of melt lens depth, thermal structure, and melt fraction. Models matching all these observations always require a deep crustal‐scale hydrothermal flow component and less than 50% of the lower crust crystallizing in situ.
Key Points
Coupled mechanical and hydrothermal models solve for different modes of crustal accretion
Hydrothermal fluids circulate deep in the lower crust
A major part of the lower crust (>50%) crystallizes in a shallow melt lens</description><subject>Accretion</subject><subject>Chemical evolution</subject><subject>Circulation</subject><subject>Convection</subject><subject>Cooling</subject><subject>Crustal accretion</subject><subject>Crusts</subject><subject>Crystallization</subject><subject>Deposition</subject><subject>finite elements</subject><subject>gabbro glacier</subject><subject>Hydrothermal flow</subject><subject>Lava</subject><subject>Lenses</subject><subject>Magma</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Melts</subject><subject>mid‐ocean ridges</subject><subject>Mineral deposits</subject><subject>Model matching</subject><subject>Numerical models</subject><subject>Oceanic convection</subject><subject>Oceans</subject><subject>Organic chemistry</subject><subject>Ridges</subject><subject>sheeted sill</subject><subject>Spreading centres</subject><subject>Thermal structure</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0c1KxDAQAOAgCq6rNx-g4MWD1UnS_B1l0VVYFUTPIU1TNkvbrEmL7NvbdT2Ih8XTDDPfDAyD0DmGawxAbghgNl8AF5SyAzTBqihyCSAO0QRAjTkR_BidpLQCAAoUT9DzU6hcykKd2Tik3jSZsTa63ocuM12V9UvnY-bbdeOt2VZTVoeYLTdVDGMvtuOE9dEOzXf3FB3Vpknu7CdO0fv93dvsIV-8zB9nt4vcFlTSXEhSMekcMxYzaZmyhFY1Z6RkXBa4qIh1VPLSQUkrIUvnJFWME8OtEswCnaLL3d51DB-DS71ufbKuaUznwpA0liDpeHpR_IdCIRUXbKQXf-gqDLEbD9GECuAKM8L3KSy4ZHLrRnW1UzaGlKKr9Tr61sSNxqC339K_vzVysuOfvnGbvVbPXxeMKk7pFzzyk3w</recordid><startdate>20160216</startdate><enddate>20160216</enddate><creator>Theissen‐Krah, Sonja</creator><creator>Rüpke, Lars H.</creator><creator>Hasenclever, Jörg</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20160216</creationdate><title>Modes of crustal accretion and their implications for hydrothermal circulation</title><author>Theissen‐Krah, Sonja ; Rüpke, Lars H. ; Hasenclever, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4383-782d58ee5ac158c59c23df652b568414d2ce386be0b3d78bee839562a6c975c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accretion</topic><topic>Chemical evolution</topic><topic>Circulation</topic><topic>Convection</topic><topic>Cooling</topic><topic>Crustal accretion</topic><topic>Crusts</topic><topic>Crystallization</topic><topic>Deposition</topic><topic>finite elements</topic><topic>gabbro glacier</topic><topic>Hydrothermal flow</topic><topic>Lava</topic><topic>Lenses</topic><topic>Magma</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Melts</topic><topic>mid‐ocean ridges</topic><topic>Mineral deposits</topic><topic>Model matching</topic><topic>Numerical models</topic><topic>Oceanic convection</topic><topic>Oceans</topic><topic>Organic chemistry</topic><topic>Ridges</topic><topic>sheeted sill</topic><topic>Spreading centres</topic><topic>Thermal structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theissen‐Krah, Sonja</creatorcontrib><creatorcontrib>Rüpke, Lars H.</creatorcontrib><creatorcontrib>Hasenclever, Jörg</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theissen‐Krah, Sonja</au><au>Rüpke, Lars H.</au><au>Hasenclever, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modes of crustal accretion and their implications for hydrothermal circulation</atitle><jtitle>Geophysical research letters</jtitle><date>2016-02-16</date><risdate>2016</risdate><volume>43</volume><issue>3</issue><spage>1124</spage><epage>1131</epage><pages>1124-1131</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Hydrothermal convection at mid‐ocean ridges links the ocean's long‐term chemical evolution to solid earth processes, forms hydrothermal ore deposits, and sustains the unique chemosynthetic vent fauna. Yet the depth extent of hydrothermal cooling and the inseparably connected question of how the lower crust accretes remain poorly constrained. Here based on coupled models of crustal accretion and hydrothermal circulation, we provide new insights into which modes of lower crust formation and hydrothermal cooling are thermally viable and most consistent with observations at fast‐spreading ridges. We integrate numerical models with observations of melt lens depth, thermal structure, and melt fraction. Models matching all these observations always require a deep crustal‐scale hydrothermal flow component and less than 50% of the lower crust crystallizing in situ.
Key Points
Coupled mechanical and hydrothermal models solve for different modes of crustal accretion
Hydrothermal fluids circulate deep in the lower crust
A major part of the lower crust (>50%) crystallizes in a shallow melt lens</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2015GL067335</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2016-02, Vol.43 (3), p.1124-1131 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808380044 |
source | Wiley-Blackwell AGU Digital Library |
subjects | Accretion Chemical evolution Circulation Convection Cooling Crustal accretion Crusts Crystallization Deposition finite elements gabbro glacier Hydrothermal flow Lava Lenses Magma Marine Mathematical models Melts mid‐ocean ridges Mineral deposits Model matching Numerical models Oceanic convection Oceans Organic chemistry Ridges sheeted sill Spreading centres Thermal structure |
title | Modes of crustal accretion and their implications for hydrothermal circulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modes%20of%20crustal%20accretion%20and%20their%20implications%20for%20hydrothermal%20circulation&rft.jtitle=Geophysical%20research%20letters&rft.au=Theissen%E2%80%90Krah,%20Sonja&rft.date=2016-02-16&rft.volume=43&rft.issue=3&rft.spage=1124&rft.epage=1131&rft.pages=1124-1131&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL067335&rft_dat=%3Cproquest_cross%3E1800489675%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4383-782d58ee5ac158c59c23df652b568414d2ce386be0b3d78bee839562a6c975c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1768586915&rft_id=info:pmid/&rfr_iscdi=true |