Loading…

Modes of crustal accretion and their implications for hydrothermal circulation

Hydrothermal convection at mid‐ocean ridges links the ocean's long‐term chemical evolution to solid earth processes, forms hydrothermal ore deposits, and sustains the unique chemosynthetic vent fauna. Yet the depth extent of hydrothermal cooling and the inseparably connected question of how the...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2016-02, Vol.43 (3), p.1124-1131
Main Authors: Theissen‐Krah, Sonja, Rüpke, Lars H., Hasenclever, Jörg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4383-782d58ee5ac158c59c23df652b568414d2ce386be0b3d78bee839562a6c975c03
cites cdi_FETCH-LOGICAL-c4383-782d58ee5ac158c59c23df652b568414d2ce386be0b3d78bee839562a6c975c03
container_end_page 1131
container_issue 3
container_start_page 1124
container_title Geophysical research letters
container_volume 43
creator Theissen‐Krah, Sonja
Rüpke, Lars H.
Hasenclever, Jörg
description Hydrothermal convection at mid‐ocean ridges links the ocean's long‐term chemical evolution to solid earth processes, forms hydrothermal ore deposits, and sustains the unique chemosynthetic vent fauna. Yet the depth extent of hydrothermal cooling and the inseparably connected question of how the lower crust accretes remain poorly constrained. Here based on coupled models of crustal accretion and hydrothermal circulation, we provide new insights into which modes of lower crust formation and hydrothermal cooling are thermally viable and most consistent with observations at fast‐spreading ridges. We integrate numerical models with observations of melt lens depth, thermal structure, and melt fraction. Models matching all these observations always require a deep crustal‐scale hydrothermal flow component and less than 50% of the lower crust crystallizing in situ. Key Points Coupled mechanical and hydrothermal models solve for different modes of crustal accretion Hydrothermal fluids circulate deep in the lower crust A major part of the lower crust (>50%) crystallizes in a shallow melt lens
doi_str_mv 10.1002/2015GL067335
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808380044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800489675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4383-782d58ee5ac158c59c23df652b568414d2ce386be0b3d78bee839562a6c975c03</originalsourceid><addsrcrecordid>eNqN0c1KxDAQAOAgCq6rNx-g4MWD1UnS_B1l0VVYFUTPIU1TNkvbrEmL7NvbdT2Ih8XTDDPfDAyD0DmGawxAbghgNl8AF5SyAzTBqihyCSAO0QRAjTkR_BidpLQCAAoUT9DzU6hcykKd2Tik3jSZsTa63ocuM12V9UvnY-bbdeOt2VZTVoeYLTdVDGMvtuOE9dEOzXf3FB3Vpknu7CdO0fv93dvsIV-8zB9nt4vcFlTSXEhSMekcMxYzaZmyhFY1Z6RkXBa4qIh1VPLSQUkrIUvnJFWME8OtEswCnaLL3d51DB-DS71ufbKuaUznwpA0liDpeHpR_IdCIRUXbKQXf-gqDLEbD9GECuAKM8L3KSy4ZHLrRnW1UzaGlKKr9Tr61sSNxqC339K_vzVysuOfvnGbvVbPXxeMKk7pFzzyk3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768586915</pqid></control><display><type>article</type><title>Modes of crustal accretion and their implications for hydrothermal circulation</title><source>Wiley-Blackwell AGU Digital Library</source><creator>Theissen‐Krah, Sonja ; Rüpke, Lars H. ; Hasenclever, Jörg</creator><creatorcontrib>Theissen‐Krah, Sonja ; Rüpke, Lars H. ; Hasenclever, Jörg</creatorcontrib><description>Hydrothermal convection at mid‐ocean ridges links the ocean's long‐term chemical evolution to solid earth processes, forms hydrothermal ore deposits, and sustains the unique chemosynthetic vent fauna. Yet the depth extent of hydrothermal cooling and the inseparably connected question of how the lower crust accretes remain poorly constrained. Here based on coupled models of crustal accretion and hydrothermal circulation, we provide new insights into which modes of lower crust formation and hydrothermal cooling are thermally viable and most consistent with observations at fast‐spreading ridges. We integrate numerical models with observations of melt lens depth, thermal structure, and melt fraction. Models matching all these observations always require a deep crustal‐scale hydrothermal flow component and less than 50% of the lower crust crystallizing in situ. Key Points Coupled mechanical and hydrothermal models solve for different modes of crustal accretion Hydrothermal fluids circulate deep in the lower crust A major part of the lower crust (&gt;50%) crystallizes in a shallow melt lens</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL067335</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Accretion ; Chemical evolution ; Circulation ; Convection ; Cooling ; Crustal accretion ; Crusts ; Crystallization ; Deposition ; finite elements ; gabbro glacier ; Hydrothermal flow ; Lava ; Lenses ; Magma ; Marine ; Mathematical models ; Melts ; mid‐ocean ridges ; Mineral deposits ; Model matching ; Numerical models ; Oceanic convection ; Oceans ; Organic chemistry ; Ridges ; sheeted sill ; Spreading centres ; Thermal structure</subject><ispartof>Geophysical research letters, 2016-02, Vol.43 (3), p.1124-1131</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4383-782d58ee5ac158c59c23df652b568414d2ce386be0b3d78bee839562a6c975c03</citedby><cites>FETCH-LOGICAL-c4383-782d58ee5ac158c59c23df652b568414d2ce386be0b3d78bee839562a6c975c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL067335$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL067335$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Theissen‐Krah, Sonja</creatorcontrib><creatorcontrib>Rüpke, Lars H.</creatorcontrib><creatorcontrib>Hasenclever, Jörg</creatorcontrib><title>Modes of crustal accretion and their implications for hydrothermal circulation</title><title>Geophysical research letters</title><description>Hydrothermal convection at mid‐ocean ridges links the ocean's long‐term chemical evolution to solid earth processes, forms hydrothermal ore deposits, and sustains the unique chemosynthetic vent fauna. Yet the depth extent of hydrothermal cooling and the inseparably connected question of how the lower crust accretes remain poorly constrained. Here based on coupled models of crustal accretion and hydrothermal circulation, we provide new insights into which modes of lower crust formation and hydrothermal cooling are thermally viable and most consistent with observations at fast‐spreading ridges. We integrate numerical models with observations of melt lens depth, thermal structure, and melt fraction. Models matching all these observations always require a deep crustal‐scale hydrothermal flow component and less than 50% of the lower crust crystallizing in situ. Key Points Coupled mechanical and hydrothermal models solve for different modes of crustal accretion Hydrothermal fluids circulate deep in the lower crust A major part of the lower crust (&gt;50%) crystallizes in a shallow melt lens</description><subject>Accretion</subject><subject>Chemical evolution</subject><subject>Circulation</subject><subject>Convection</subject><subject>Cooling</subject><subject>Crustal accretion</subject><subject>Crusts</subject><subject>Crystallization</subject><subject>Deposition</subject><subject>finite elements</subject><subject>gabbro glacier</subject><subject>Hydrothermal flow</subject><subject>Lava</subject><subject>Lenses</subject><subject>Magma</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Melts</subject><subject>mid‐ocean ridges</subject><subject>Mineral deposits</subject><subject>Model matching</subject><subject>Numerical models</subject><subject>Oceanic convection</subject><subject>Oceans</subject><subject>Organic chemistry</subject><subject>Ridges</subject><subject>sheeted sill</subject><subject>Spreading centres</subject><subject>Thermal structure</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0c1KxDAQAOAgCq6rNx-g4MWD1UnS_B1l0VVYFUTPIU1TNkvbrEmL7NvbdT2Ih8XTDDPfDAyD0DmGawxAbghgNl8AF5SyAzTBqihyCSAO0QRAjTkR_BidpLQCAAoUT9DzU6hcykKd2Tik3jSZsTa63ocuM12V9UvnY-bbdeOt2VZTVoeYLTdVDGMvtuOE9dEOzXf3FB3Vpknu7CdO0fv93dvsIV-8zB9nt4vcFlTSXEhSMekcMxYzaZmyhFY1Z6RkXBa4qIh1VPLSQUkrIUvnJFWME8OtEswCnaLL3d51DB-DS71ufbKuaUznwpA0liDpeHpR_IdCIRUXbKQXf-gqDLEbD9GECuAKM8L3KSy4ZHLrRnW1UzaGlKKr9Tr61sSNxqC339K_vzVysuOfvnGbvVbPXxeMKk7pFzzyk3w</recordid><startdate>20160216</startdate><enddate>20160216</enddate><creator>Theissen‐Krah, Sonja</creator><creator>Rüpke, Lars H.</creator><creator>Hasenclever, Jörg</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20160216</creationdate><title>Modes of crustal accretion and their implications for hydrothermal circulation</title><author>Theissen‐Krah, Sonja ; Rüpke, Lars H. ; Hasenclever, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4383-782d58ee5ac158c59c23df652b568414d2ce386be0b3d78bee839562a6c975c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accretion</topic><topic>Chemical evolution</topic><topic>Circulation</topic><topic>Convection</topic><topic>Cooling</topic><topic>Crustal accretion</topic><topic>Crusts</topic><topic>Crystallization</topic><topic>Deposition</topic><topic>finite elements</topic><topic>gabbro glacier</topic><topic>Hydrothermal flow</topic><topic>Lava</topic><topic>Lenses</topic><topic>Magma</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Melts</topic><topic>mid‐ocean ridges</topic><topic>Mineral deposits</topic><topic>Model matching</topic><topic>Numerical models</topic><topic>Oceanic convection</topic><topic>Oceans</topic><topic>Organic chemistry</topic><topic>Ridges</topic><topic>sheeted sill</topic><topic>Spreading centres</topic><topic>Thermal structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theissen‐Krah, Sonja</creatorcontrib><creatorcontrib>Rüpke, Lars H.</creatorcontrib><creatorcontrib>Hasenclever, Jörg</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theissen‐Krah, Sonja</au><au>Rüpke, Lars H.</au><au>Hasenclever, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modes of crustal accretion and their implications for hydrothermal circulation</atitle><jtitle>Geophysical research letters</jtitle><date>2016-02-16</date><risdate>2016</risdate><volume>43</volume><issue>3</issue><spage>1124</spage><epage>1131</epage><pages>1124-1131</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Hydrothermal convection at mid‐ocean ridges links the ocean's long‐term chemical evolution to solid earth processes, forms hydrothermal ore deposits, and sustains the unique chemosynthetic vent fauna. Yet the depth extent of hydrothermal cooling and the inseparably connected question of how the lower crust accretes remain poorly constrained. Here based on coupled models of crustal accretion and hydrothermal circulation, we provide new insights into which modes of lower crust formation and hydrothermal cooling are thermally viable and most consistent with observations at fast‐spreading ridges. We integrate numerical models with observations of melt lens depth, thermal structure, and melt fraction. Models matching all these observations always require a deep crustal‐scale hydrothermal flow component and less than 50% of the lower crust crystallizing in situ. Key Points Coupled mechanical and hydrothermal models solve for different modes of crustal accretion Hydrothermal fluids circulate deep in the lower crust A major part of the lower crust (&gt;50%) crystallizes in a shallow melt lens</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2015GL067335</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2016-02, Vol.43 (3), p.1124-1131
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1808380044
source Wiley-Blackwell AGU Digital Library
subjects Accretion
Chemical evolution
Circulation
Convection
Cooling
Crustal accretion
Crusts
Crystallization
Deposition
finite elements
gabbro glacier
Hydrothermal flow
Lava
Lenses
Magma
Marine
Mathematical models
Melts
mid‐ocean ridges
Mineral deposits
Model matching
Numerical models
Oceanic convection
Oceans
Organic chemistry
Ridges
sheeted sill
Spreading centres
Thermal structure
title Modes of crustal accretion and their implications for hydrothermal circulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modes%20of%20crustal%20accretion%20and%20their%20implications%20for%20hydrothermal%20circulation&rft.jtitle=Geophysical%20research%20letters&rft.au=Theissen%E2%80%90Krah,%20Sonja&rft.date=2016-02-16&rft.volume=43&rft.issue=3&rft.spage=1124&rft.epage=1131&rft.pages=1124-1131&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL067335&rft_dat=%3Cproquest_cross%3E1800489675%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4383-782d58ee5ac158c59c23df652b568414d2ce386be0b3d78bee839562a6c975c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1768586915&rft_id=info:pmid/&rfr_iscdi=true