Loading…

Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability

Instrumental observations, paleoproxies, and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NASPG). However, a poorly sampled observational record and a diversity of model behaviors mean that the precise nature and mechanisms of this variability are u...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2015-07, Vol.42 (14), p.5926-5934
Main Authors: Menary, Matthew B., Hodson, Daniel L. R., Robson, Jon I., Sutton, Rowan T., Wood, Richard A., Hunt, Jonathan A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5463-2e27ae01c6eb114d5640adbe34e47dca2290e852e85b1f4f459b38401d0197083
cites cdi_FETCH-LOGICAL-c5463-2e27ae01c6eb114d5640adbe34e47dca2290e852e85b1f4f459b38401d0197083
container_end_page 5934
container_issue 14
container_start_page 5926
container_title Geophysical research letters
container_volume 42
creator Menary, Matthew B.
Hodson, Daniel L. R.
Robson, Jon I.
Sutton, Rowan T.
Wood, Richard A.
Hunt, Jonathan A.
description Instrumental observations, paleoproxies, and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NASPG). However, a poorly sampled observational record and a diversity of model behaviors mean that the precise nature and mechanisms of this variability are unclear. Here we analyze an exceptionally large multimodel ensemble of 42 present‐generation climate models to test whether NASPG mean state biases systematically affect the representation of decadal variability. Temperature and salinity biases in the Labrador Sea covary and influence whether density variability is controlled by temperature or salinity variations. Ocean horizontal resolution is a good predictor of the biases and the location of the dominant dynamical feedbacks within the NASPG. However, we find no link to the spectral characteristics of the variability. Our results suggest that the mean state and mechanisms of variability within the NASPG are not independent. This represents an important caveat for decadal predictions using anomaly assimilation methods. Key Points Climate model biases systematically affect diagnosed mechanisms of variability Decadal predictions cannot be assumed to be independent of the mean state North Atlantic biases, density drivers, feedbacks, and resolution are linked
doi_str_mv 10.1002/2015GL064360
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808382443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808382443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5463-2e27ae01c6eb114d5640adbe34e47dca2290e852e85b1f4f459b38401d0197083</originalsourceid><addsrcrecordid>eNqF0c1uEzEQAGALgUQo3HgAS1w4sO2M7bV3jyUqaaW0VOXvaHl3vdTFGwfbgebt6zQIoR7KwbJH-mY04yHkNcIhArAjBlgvliAFl_CEzLAVomoA1FMyA2jLmyn5nLxI6QYAOHCcke7kdu1DdKvvNF9b6qa16TMNI52fn13WdAqD9bRzJtlEw-reJDdtvMmuhMVdhJiv6XH2ZpVdTwfbm8F4-stEZzrnXd6-JM9G45N99ec-IF8-nHyen1bLj4uz-fGy6mshecUsU8YC9tJ2iGKopQAzdJYLK9TQG8ZasE3NyulwFKOo2443AnAAbBU0_IC83dddx_BzY1PWk0u99aUzGzZJY1NQw4Tg_6cKm5aXrnZV3zygN2ETV2UQjS2WRsufskeVAoaguKyLerdXfQwpRTvqdXSTiVuNoHcb1P9usHC257-dt9tHrV5cLWuOzW60ap_kUra3f5NM_KGl4qrW3y4WWuGnq9Pz91-15HeAXqfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702107365</pqid></control><display><type>article</type><title>Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Menary, Matthew B. ; Hodson, Daniel L. R. ; Robson, Jon I. ; Sutton, Rowan T. ; Wood, Richard A. ; Hunt, Jonathan A.</creator><creatorcontrib>Menary, Matthew B. ; Hodson, Daniel L. R. ; Robson, Jon I. ; Sutton, Rowan T. ; Wood, Richard A. ; Hunt, Jonathan A.</creatorcontrib><description>Instrumental observations, paleoproxies, and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NASPG). However, a poorly sampled observational record and a diversity of model behaviors mean that the precise nature and mechanisms of this variability are unclear. Here we analyze an exceptionally large multimodel ensemble of 42 present‐generation climate models to test whether NASPG mean state biases systematically affect the representation of decadal variability. Temperature and salinity biases in the Labrador Sea covary and influence whether density variability is controlled by temperature or salinity variations. Ocean horizontal resolution is a good predictor of the biases and the location of the dominant dynamical feedbacks within the NASPG. However, we find no link to the spectral characteristics of the variability. Our results suggest that the mean state and mechanisms of variability within the NASPG are not independent. This represents an important caveat for decadal predictions using anomaly assimilation methods. Key Points Climate model biases systematically affect diagnosed mechanisms of variability Decadal predictions cannot be assumed to be independent of the mean state North Atlantic biases, density drivers, feedbacks, and resolution are linked</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL064360</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Assimilation ; Climate ; Climate models ; cmip5 ; Computer simulation ; Control systems ; Control theory ; decadal predictions ; decadal variability ; Density ; Feedback ; Labrador ; Marine ; Mathematical models ; Meteorology ; Methods ; north atlantic ; Ocean temperature ; Ocean-atmosphere interaction ; resolution ; Salinity ; Salinity effects ; Salinity variations ; Simulation ; Spectra ; subpolar gyre ; Temperature ; Temperature effects ; Variability</subject><ispartof>Geophysical research letters, 2015-07, Vol.42 (14), p.5926-5934</ispartof><rights>2015. The Authors.</rights><rights>2015. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright Blackwell Publishing Ltd. Jul 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5463-2e27ae01c6eb114d5640adbe34e47dca2290e852e85b1f4f459b38401d0197083</citedby><cites>FETCH-LOGICAL-c5463-2e27ae01c6eb114d5640adbe34e47dca2290e852e85b1f4f459b38401d0197083</cites><orcidid>0000-0002-9627-2056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL064360$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL064360$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11513,27923,27924,46467,46891</link.rule.ids></links><search><creatorcontrib>Menary, Matthew B.</creatorcontrib><creatorcontrib>Hodson, Daniel L. R.</creatorcontrib><creatorcontrib>Robson, Jon I.</creatorcontrib><creatorcontrib>Sutton, Rowan T.</creatorcontrib><creatorcontrib>Wood, Richard A.</creatorcontrib><creatorcontrib>Hunt, Jonathan A.</creatorcontrib><title>Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Instrumental observations, paleoproxies, and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NASPG). However, a poorly sampled observational record and a diversity of model behaviors mean that the precise nature and mechanisms of this variability are unclear. Here we analyze an exceptionally large multimodel ensemble of 42 present‐generation climate models to test whether NASPG mean state biases systematically affect the representation of decadal variability. Temperature and salinity biases in the Labrador Sea covary and influence whether density variability is controlled by temperature or salinity variations. Ocean horizontal resolution is a good predictor of the biases and the location of the dominant dynamical feedbacks within the NASPG. However, we find no link to the spectral characteristics of the variability. Our results suggest that the mean state and mechanisms of variability within the NASPG are not independent. This represents an important caveat for decadal predictions using anomaly assimilation methods. Key Points Climate model biases systematically affect diagnosed mechanisms of variability Decadal predictions cannot be assumed to be independent of the mean state North Atlantic biases, density drivers, feedbacks, and resolution are linked</description><subject>Assimilation</subject><subject>Climate</subject><subject>Climate models</subject><subject>cmip5</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Control theory</subject><subject>decadal predictions</subject><subject>decadal variability</subject><subject>Density</subject><subject>Feedback</subject><subject>Labrador</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Methods</subject><subject>north atlantic</subject><subject>Ocean temperature</subject><subject>Ocean-atmosphere interaction</subject><subject>resolution</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity variations</subject><subject>Simulation</subject><subject>Spectra</subject><subject>subpolar gyre</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Variability</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqF0c1uEzEQAGALgUQo3HgAS1w4sO2M7bV3jyUqaaW0VOXvaHl3vdTFGwfbgebt6zQIoR7KwbJH-mY04yHkNcIhArAjBlgvliAFl_CEzLAVomoA1FMyA2jLmyn5nLxI6QYAOHCcke7kdu1DdKvvNF9b6qa16TMNI52fn13WdAqD9bRzJtlEw-reJDdtvMmuhMVdhJiv6XH2ZpVdTwfbm8F4-stEZzrnXd6-JM9G45N99ec-IF8-nHyen1bLj4uz-fGy6mshecUsU8YC9tJ2iGKopQAzdJYLK9TQG8ZasE3NyulwFKOo2443AnAAbBU0_IC83dddx_BzY1PWk0u99aUzGzZJY1NQw4Tg_6cKm5aXrnZV3zygN2ETV2UQjS2WRsufskeVAoaguKyLerdXfQwpRTvqdXSTiVuNoHcb1P9usHC257-dt9tHrV5cLWuOzW60ap_kUra3f5NM_KGl4qrW3y4WWuGnq9Pz91-15HeAXqfo</recordid><startdate>20150728</startdate><enddate>20150728</enddate><creator>Menary, Matthew B.</creator><creator>Hodson, Daniel L. R.</creator><creator>Robson, Jon I.</creator><creator>Sutton, Rowan T.</creator><creator>Wood, Richard A.</creator><creator>Hunt, Jonathan A.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope><orcidid>https://orcid.org/0000-0002-9627-2056</orcidid></search><sort><creationdate>20150728</creationdate><title>Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability</title><author>Menary, Matthew B. ; Hodson, Daniel L. R. ; Robson, Jon I. ; Sutton, Rowan T. ; Wood, Richard A. ; Hunt, Jonathan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5463-2e27ae01c6eb114d5640adbe34e47dca2290e852e85b1f4f459b38401d0197083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Assimilation</topic><topic>Climate</topic><topic>Climate models</topic><topic>cmip5</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Control theory</topic><topic>decadal predictions</topic><topic>decadal variability</topic><topic>Density</topic><topic>Feedback</topic><topic>Labrador</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Methods</topic><topic>north atlantic</topic><topic>Ocean temperature</topic><topic>Ocean-atmosphere interaction</topic><topic>resolution</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity variations</topic><topic>Simulation</topic><topic>Spectra</topic><topic>subpolar gyre</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menary, Matthew B.</creatorcontrib><creatorcontrib>Hodson, Daniel L. R.</creatorcontrib><creatorcontrib>Robson, Jon I.</creatorcontrib><creatorcontrib>Sutton, Rowan T.</creatorcontrib><creatorcontrib>Wood, Richard A.</creatorcontrib><creatorcontrib>Hunt, Jonathan A.</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles(OpenAccess)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menary, Matthew B.</au><au>Hodson, Daniel L. R.</au><au>Robson, Jon I.</au><au>Sutton, Rowan T.</au><au>Wood, Richard A.</au><au>Hunt, Jonathan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2015-07-28</date><risdate>2015</risdate><volume>42</volume><issue>14</issue><spage>5926</spage><epage>5934</epage><pages>5926-5934</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Instrumental observations, paleoproxies, and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NASPG). However, a poorly sampled observational record and a diversity of model behaviors mean that the precise nature and mechanisms of this variability are unclear. Here we analyze an exceptionally large multimodel ensemble of 42 present‐generation climate models to test whether NASPG mean state biases systematically affect the representation of decadal variability. Temperature and salinity biases in the Labrador Sea covary and influence whether density variability is controlled by temperature or salinity variations. Ocean horizontal resolution is a good predictor of the biases and the location of the dominant dynamical feedbacks within the NASPG. However, we find no link to the spectral characteristics of the variability. Our results suggest that the mean state and mechanisms of variability within the NASPG are not independent. This represents an important caveat for decadal predictions using anomaly assimilation methods. Key Points Climate model biases systematically affect diagnosed mechanisms of variability Decadal predictions cannot be assumed to be independent of the mean state North Atlantic biases, density drivers, feedbacks, and resolution are linked</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GL064360</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9627-2056</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2015-07, Vol.42 (14), p.5926-5934
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1808382443
source Wiley-Blackwell AGU Digital Archive
subjects Assimilation
Climate
Climate models
cmip5
Computer simulation
Control systems
Control theory
decadal predictions
decadal variability
Density
Feedback
Labrador
Marine
Mathematical models
Meteorology
Methods
north atlantic
Ocean temperature
Ocean-atmosphere interaction
resolution
Salinity
Salinity effects
Salinity variations
Simulation
Spectra
subpolar gyre
Temperature
Temperature effects
Variability
title Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20impact%20of%20CMIP5%20model%20biases%20on%20the%20simulation%20of%20North%20Atlantic%20decadal%20variability&rft.jtitle=Geophysical%20research%20letters&rft.au=Menary,%20Matthew%20B.&rft.date=2015-07-28&rft.volume=42&rft.issue=14&rft.spage=5926&rft.epage=5934&rft.pages=5926-5934&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL064360&rft_dat=%3Cproquest_cross%3E1808382443%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5463-2e27ae01c6eb114d5640adbe34e47dca2290e852e85b1f4f459b38401d0197083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1702107365&rft_id=info:pmid/&rfr_iscdi=true