Loading…
Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability
Instrumental observations, paleoproxies, and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NASPG). However, a poorly sampled observational record and a diversity of model behaviors mean that the precise nature and mechanisms of this variability are u...
Saved in:
Published in: | Geophysical research letters 2015-07, Vol.42 (14), p.5926-5934 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5463-2e27ae01c6eb114d5640adbe34e47dca2290e852e85b1f4f459b38401d0197083 |
---|---|
cites | cdi_FETCH-LOGICAL-c5463-2e27ae01c6eb114d5640adbe34e47dca2290e852e85b1f4f459b38401d0197083 |
container_end_page | 5934 |
container_issue | 14 |
container_start_page | 5926 |
container_title | Geophysical research letters |
container_volume | 42 |
creator | Menary, Matthew B. Hodson, Daniel L. R. Robson, Jon I. Sutton, Rowan T. Wood, Richard A. Hunt, Jonathan A. |
description | Instrumental observations, paleoproxies, and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NASPG). However, a poorly sampled observational record and a diversity of model behaviors mean that the precise nature and mechanisms of this variability are unclear. Here we analyze an exceptionally large multimodel ensemble of 42 present‐generation climate models to test whether NASPG mean state biases systematically affect the representation of decadal variability. Temperature and salinity biases in the Labrador Sea covary and influence whether density variability is controlled by temperature or salinity variations. Ocean horizontal resolution is a good predictor of the biases and the location of the dominant dynamical feedbacks within the NASPG. However, we find no link to the spectral characteristics of the variability. Our results suggest that the mean state and mechanisms of variability within the NASPG are not independent. This represents an important caveat for decadal predictions using anomaly assimilation methods.
Key Points
Climate model biases systematically affect diagnosed mechanisms of variability
Decadal predictions cannot be assumed to be independent of the mean state
North Atlantic biases, density drivers, feedbacks, and resolution are linked |
doi_str_mv | 10.1002/2015GL064360 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808382443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808382443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5463-2e27ae01c6eb114d5640adbe34e47dca2290e852e85b1f4f459b38401d0197083</originalsourceid><addsrcrecordid>eNqF0c1uEzEQAGALgUQo3HgAS1w4sO2M7bV3jyUqaaW0VOXvaHl3vdTFGwfbgebt6zQIoR7KwbJH-mY04yHkNcIhArAjBlgvliAFl_CEzLAVomoA1FMyA2jLmyn5nLxI6QYAOHCcke7kdu1DdKvvNF9b6qa16TMNI52fn13WdAqD9bRzJtlEw-reJDdtvMmuhMVdhJiv6XH2ZpVdTwfbm8F4-stEZzrnXd6-JM9G45N99ec-IF8-nHyen1bLj4uz-fGy6mshecUsU8YC9tJ2iGKopQAzdJYLK9TQG8ZasE3NyulwFKOo2443AnAAbBU0_IC83dddx_BzY1PWk0u99aUzGzZJY1NQw4Tg_6cKm5aXrnZV3zygN2ETV2UQjS2WRsufskeVAoaguKyLerdXfQwpRTvqdXSTiVuNoHcb1P9usHC257-dt9tHrV5cLWuOzW60ap_kUra3f5NM_KGl4qrW3y4WWuGnq9Pz91-15HeAXqfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702107365</pqid></control><display><type>article</type><title>Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Menary, Matthew B. ; Hodson, Daniel L. R. ; Robson, Jon I. ; Sutton, Rowan T. ; Wood, Richard A. ; Hunt, Jonathan A.</creator><creatorcontrib>Menary, Matthew B. ; Hodson, Daniel L. R. ; Robson, Jon I. ; Sutton, Rowan T. ; Wood, Richard A. ; Hunt, Jonathan A.</creatorcontrib><description>Instrumental observations, paleoproxies, and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NASPG). However, a poorly sampled observational record and a diversity of model behaviors mean that the precise nature and mechanisms of this variability are unclear. Here we analyze an exceptionally large multimodel ensemble of 42 present‐generation climate models to test whether NASPG mean state biases systematically affect the representation of decadal variability. Temperature and salinity biases in the Labrador Sea covary and influence whether density variability is controlled by temperature or salinity variations. Ocean horizontal resolution is a good predictor of the biases and the location of the dominant dynamical feedbacks within the NASPG. However, we find no link to the spectral characteristics of the variability. Our results suggest that the mean state and mechanisms of variability within the NASPG are not independent. This represents an important caveat for decadal predictions using anomaly assimilation methods.
Key Points
Climate model biases systematically affect diagnosed mechanisms of variability
Decadal predictions cannot be assumed to be independent of the mean state
North Atlantic biases, density drivers, feedbacks, and resolution are linked</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL064360</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Assimilation ; Climate ; Climate models ; cmip5 ; Computer simulation ; Control systems ; Control theory ; decadal predictions ; decadal variability ; Density ; Feedback ; Labrador ; Marine ; Mathematical models ; Meteorology ; Methods ; north atlantic ; Ocean temperature ; Ocean-atmosphere interaction ; resolution ; Salinity ; Salinity effects ; Salinity variations ; Simulation ; Spectra ; subpolar gyre ; Temperature ; Temperature effects ; Variability</subject><ispartof>Geophysical research letters, 2015-07, Vol.42 (14), p.5926-5934</ispartof><rights>2015. The Authors.</rights><rights>2015. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright Blackwell Publishing Ltd. Jul 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5463-2e27ae01c6eb114d5640adbe34e47dca2290e852e85b1f4f459b38401d0197083</citedby><cites>FETCH-LOGICAL-c5463-2e27ae01c6eb114d5640adbe34e47dca2290e852e85b1f4f459b38401d0197083</cites><orcidid>0000-0002-9627-2056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL064360$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL064360$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11513,27923,27924,46467,46891</link.rule.ids></links><search><creatorcontrib>Menary, Matthew B.</creatorcontrib><creatorcontrib>Hodson, Daniel L. R.</creatorcontrib><creatorcontrib>Robson, Jon I.</creatorcontrib><creatorcontrib>Sutton, Rowan T.</creatorcontrib><creatorcontrib>Wood, Richard A.</creatorcontrib><creatorcontrib>Hunt, Jonathan A.</creatorcontrib><title>Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Instrumental observations, paleoproxies, and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NASPG). However, a poorly sampled observational record and a diversity of model behaviors mean that the precise nature and mechanisms of this variability are unclear. Here we analyze an exceptionally large multimodel ensemble of 42 present‐generation climate models to test whether NASPG mean state biases systematically affect the representation of decadal variability. Temperature and salinity biases in the Labrador Sea covary and influence whether density variability is controlled by temperature or salinity variations. Ocean horizontal resolution is a good predictor of the biases and the location of the dominant dynamical feedbacks within the NASPG. However, we find no link to the spectral characteristics of the variability. Our results suggest that the mean state and mechanisms of variability within the NASPG are not independent. This represents an important caveat for decadal predictions using anomaly assimilation methods.
Key Points
Climate model biases systematically affect diagnosed mechanisms of variability
Decadal predictions cannot be assumed to be independent of the mean state
North Atlantic biases, density drivers, feedbacks, and resolution are linked</description><subject>Assimilation</subject><subject>Climate</subject><subject>Climate models</subject><subject>cmip5</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Control theory</subject><subject>decadal predictions</subject><subject>decadal variability</subject><subject>Density</subject><subject>Feedback</subject><subject>Labrador</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Methods</subject><subject>north atlantic</subject><subject>Ocean temperature</subject><subject>Ocean-atmosphere interaction</subject><subject>resolution</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity variations</subject><subject>Simulation</subject><subject>Spectra</subject><subject>subpolar gyre</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Variability</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqF0c1uEzEQAGALgUQo3HgAS1w4sO2M7bV3jyUqaaW0VOXvaHl3vdTFGwfbgebt6zQIoR7KwbJH-mY04yHkNcIhArAjBlgvliAFl_CEzLAVomoA1FMyA2jLmyn5nLxI6QYAOHCcke7kdu1DdKvvNF9b6qa16TMNI52fn13WdAqD9bRzJtlEw-reJDdtvMmuhMVdhJiv6XH2ZpVdTwfbm8F4-stEZzrnXd6-JM9G45N99ec-IF8-nHyen1bLj4uz-fGy6mshecUsU8YC9tJ2iGKopQAzdJYLK9TQG8ZasE3NyulwFKOo2443AnAAbBU0_IC83dddx_BzY1PWk0u99aUzGzZJY1NQw4Tg_6cKm5aXrnZV3zygN2ETV2UQjS2WRsufskeVAoaguKyLerdXfQwpRTvqdXSTiVuNoHcb1P9usHC257-dt9tHrV5cLWuOzW60ap_kUra3f5NM_KGl4qrW3y4WWuGnq9Pz91-15HeAXqfo</recordid><startdate>20150728</startdate><enddate>20150728</enddate><creator>Menary, Matthew B.</creator><creator>Hodson, Daniel L. R.</creator><creator>Robson, Jon I.</creator><creator>Sutton, Rowan T.</creator><creator>Wood, Richard A.</creator><creator>Hunt, Jonathan A.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope><orcidid>https://orcid.org/0000-0002-9627-2056</orcidid></search><sort><creationdate>20150728</creationdate><title>Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability</title><author>Menary, Matthew B. ; Hodson, Daniel L. R. ; Robson, Jon I. ; Sutton, Rowan T. ; Wood, Richard A. ; Hunt, Jonathan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5463-2e27ae01c6eb114d5640adbe34e47dca2290e852e85b1f4f459b38401d0197083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Assimilation</topic><topic>Climate</topic><topic>Climate models</topic><topic>cmip5</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Control theory</topic><topic>decadal predictions</topic><topic>decadal variability</topic><topic>Density</topic><topic>Feedback</topic><topic>Labrador</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Methods</topic><topic>north atlantic</topic><topic>Ocean temperature</topic><topic>Ocean-atmosphere interaction</topic><topic>resolution</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity variations</topic><topic>Simulation</topic><topic>Spectra</topic><topic>subpolar gyre</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menary, Matthew B.</creatorcontrib><creatorcontrib>Hodson, Daniel L. R.</creatorcontrib><creatorcontrib>Robson, Jon I.</creatorcontrib><creatorcontrib>Sutton, Rowan T.</creatorcontrib><creatorcontrib>Wood, Richard A.</creatorcontrib><creatorcontrib>Hunt, Jonathan A.</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles(OpenAccess)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menary, Matthew B.</au><au>Hodson, Daniel L. R.</au><au>Robson, Jon I.</au><au>Sutton, Rowan T.</au><au>Wood, Richard A.</au><au>Hunt, Jonathan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2015-07-28</date><risdate>2015</risdate><volume>42</volume><issue>14</issue><spage>5926</spage><epage>5934</epage><pages>5926-5934</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Instrumental observations, paleoproxies, and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NASPG). However, a poorly sampled observational record and a diversity of model behaviors mean that the precise nature and mechanisms of this variability are unclear. Here we analyze an exceptionally large multimodel ensemble of 42 present‐generation climate models to test whether NASPG mean state biases systematically affect the representation of decadal variability. Temperature and salinity biases in the Labrador Sea covary and influence whether density variability is controlled by temperature or salinity variations. Ocean horizontal resolution is a good predictor of the biases and the location of the dominant dynamical feedbacks within the NASPG. However, we find no link to the spectral characteristics of the variability. Our results suggest that the mean state and mechanisms of variability within the NASPG are not independent. This represents an important caveat for decadal predictions using anomaly assimilation methods.
Key Points
Climate model biases systematically affect diagnosed mechanisms of variability
Decadal predictions cannot be assumed to be independent of the mean state
North Atlantic biases, density drivers, feedbacks, and resolution are linked</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GL064360</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9627-2056</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2015-07, Vol.42 (14), p.5926-5934 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808382443 |
source | Wiley-Blackwell AGU Digital Archive |
subjects | Assimilation Climate Climate models cmip5 Computer simulation Control systems Control theory decadal predictions decadal variability Density Feedback Labrador Marine Mathematical models Meteorology Methods north atlantic Ocean temperature Ocean-atmosphere interaction resolution Salinity Salinity effects Salinity variations Simulation Spectra subpolar gyre Temperature Temperature effects Variability |
title | Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20impact%20of%20CMIP5%20model%20biases%20on%20the%20simulation%20of%20North%20Atlantic%20decadal%20variability&rft.jtitle=Geophysical%20research%20letters&rft.au=Menary,%20Matthew%20B.&rft.date=2015-07-28&rft.volume=42&rft.issue=14&rft.spage=5926&rft.epage=5934&rft.pages=5926-5934&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL064360&rft_dat=%3Cproquest_cross%3E1808382443%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5463-2e27ae01c6eb114d5640adbe34e47dca2290e852e85b1f4f459b38401d0197083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1702107365&rft_id=info:pmid/&rfr_iscdi=true |