Loading…
On the Influence of Sea Surface Height Variability on Satellite Altimeter Derived Gravity
The effect of sea surface height (SSH) variability is one of the primary factors that limit the accuracy and resolution of altimeter-derived gravity values. We propose a method to estimate the influence of variation of the sea surface height on the accuracy of satellite-derived gravity by simulation...
Saved in:
Published in: | Marine geodesy 2001-04, Vol.24 (2), p.73-84 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of sea surface height (SSH) variability is one of the primary factors that limit the accuracy and resolution of altimeter-derived gravity values. We propose a method to estimate the influence of variation of the sea surface height on the accuracy of satellite-derived gravity by simulation technique, with a case study around Indonesian waters. Wederived an Indonesian marine gravity map using the Geosat-geodetic mission (GM). Since most of the area studied is located around coastal and shallow areas, the measurement of SSH of this area is less accurate. To obtain a distribution of SSH variability over the study area, Topex/Poseidon (T/P) data were first processed and assessed. Processing 52 cycles of the Topex/Poseidon data, the root mean square (RMS) of SSH variability for each cycle was found to vary from 1 to 179 cm. Further, for the purpose of estimating the accuracy of altimeter-derived gravity, we derived several levels of Gaussian noise, computed simulation data by adding the Gaussian noise to Geosat data, and determined simulated gravity maps. Based on the distribution of RMS values from T/P data and standard deviation (STD) differences between the simulated and the original gravity maps, we estimated the accuracy of the gravity map. Around Indonesian waters, the accuracy of the gravity map influenced by SSH variation was estimated to be within the range 0.8Angstrom93 mgal. |
---|---|
ISSN: | 0149-0419 1521-060X |
DOI: | 10.1080/014904101300182286 |