Loading…

In Silico Prediction of Mechanism of Action for Cancer Therapeutics

Cancer is currently the second leading cause of death in the U.S. and is projected to become the principal cause in the near future. While radiation and surgery are common cancer treatment methods, chemotherapy remains a key treatment option, offering distinct advantages over other therapy options,...

Full description

Saved in:
Bibliographic Details
Published in:Molecular informatics 2013-08, Vol.32 (8), p.735-741
Main Authors: Whitebay, E. A., Gasem, K. A. M., Neely, B. J., Ramsey, J. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4489-783b905a1dce8c09a865ccee4b15f3737ce12d1b7e1160de5bda92c9a3f484763
cites cdi_FETCH-LOGICAL-c4489-783b905a1dce8c09a865ccee4b15f3737ce12d1b7e1160de5bda92c9a3f484763
container_end_page 741
container_issue 8
container_start_page 735
container_title Molecular informatics
container_volume 32
creator Whitebay, E. A.
Gasem, K. A. M.
Neely, B. J.
Ramsey, J. D.
description Cancer is currently the second leading cause of death in the U.S. and is projected to become the principal cause in the near future. While radiation and surgery are common cancer treatment methods, chemotherapy remains a key treatment option, offering distinct advantages over other therapy options, especially in the management of metastasized tumors. Understanding the mechanism of action (MoA) of current and newly developed drugs is crucial to ongoing drug development research. Foreknowledge of how a candidate drug works can yield a wealth of information, including which cancers a drug may treat more effectively based on the susceptibility of the cancer to drugs with the same MoA. Previous studies concerning prediction of MoA have relied on costly experimental measurements as input for their predictions. We have developed an a priori quantitative structure‐activity relationship (QSAR) for the in silico prediction of MoA without the need for experimental measurements. This model enables us to relate structural features of a chemical to its efficacy with a predictive accuracy of over 80 %, thus identifying the MoA of a candidate drug without costly, time‐consuming experimental tests.
doi_str_mv 10.1002/minf.201300039
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808603693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3787627321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4489-783b905a1dce8c09a865ccee4b15f3737ce12d1b7e1160de5bda92c9a3f484763</originalsourceid><addsrcrecordid>eNqFkE1r20AQhpeSUps01x6LIJdc5M5qpf04JiZ2TGM3kJRCLstqNcKb6MPZtWjz7yMh15Rcepqd5XkfhpeQLxRmFCD5VrumnCVAGQAw9YFMqeQypiKjJ8d3yibkLIQnGJiEC6k-kUkiUgnAsymZr5ro3lXOttGdx8LZvWubqC2jNdqtaVyoh-Vy_C5bH81NY9FHD1v0Zofd3tnwmXwsTRXw7DBPyc_F9cP8Jr79sVzNL29jm6ZSxUKyXEFmaGFRWlBG8sxaxDSnWckEExZpUtBcIKUcCszywqjEKsPKVKaCs1NyMXp3vn3pMOx17YLFqjINtl3QVILkwLhiPXr-Dn1qO9_012kqgKskAzoIZyNlfRuCx1LvvKuNf9UU9NCwHhrWx4b7wNeDtstrLI743z57QI3Ab1fh6390er3aLP6Vx2PWhT3-OWaNf9a8byfTvzZL_X3JHh-FAn3F3gBKD5Se</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706925016</pqid></control><display><type>article</type><title>In Silico Prediction of Mechanism of Action for Cancer Therapeutics</title><source>Wiley</source><creator>Whitebay, E. A. ; Gasem, K. A. M. ; Neely, B. J. ; Ramsey, J. D.</creator><creatorcontrib>Whitebay, E. A. ; Gasem, K. A. M. ; Neely, B. J. ; Ramsey, J. D.</creatorcontrib><description>Cancer is currently the second leading cause of death in the U.S. and is projected to become the principal cause in the near future. While radiation and surgery are common cancer treatment methods, chemotherapy remains a key treatment option, offering distinct advantages over other therapy options, especially in the management of metastasized tumors. Understanding the mechanism of action (MoA) of current and newly developed drugs is crucial to ongoing drug development research. Foreknowledge of how a candidate drug works can yield a wealth of information, including which cancers a drug may treat more effectively based on the susceptibility of the cancer to drugs with the same MoA. Previous studies concerning prediction of MoA have relied on costly experimental measurements as input for their predictions. We have developed an a priori quantitative structure‐activity relationship (QSAR) for the in silico prediction of MoA without the need for experimental measurements. This model enables us to relate structural features of a chemical to its efficacy with a predictive accuracy of over 80 %, thus identifying the MoA of a candidate drug without costly, time‐consuming experimental tests.</description><identifier>ISSN: 1868-1743</identifier><identifier>EISSN: 1868-1751</identifier><identifier>DOI: 10.1002/minf.201300039</identifier><identifier>PMID: 27480065</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Cancer ; Cancer therapies ; In silico prediction ; Mechanism of action ; Prescription drugs ; Quantitative structureactivity relationship</subject><ispartof>Molecular informatics, 2013-08, Vol.32 (8), p.735-741</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4489-783b905a1dce8c09a865ccee4b15f3737ce12d1b7e1160de5bda92c9a3f484763</citedby><cites>FETCH-LOGICAL-c4489-783b905a1dce8c09a865ccee4b15f3737ce12d1b7e1160de5bda92c9a3f484763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27480065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitebay, E. A.</creatorcontrib><creatorcontrib>Gasem, K. A. M.</creatorcontrib><creatorcontrib>Neely, B. J.</creatorcontrib><creatorcontrib>Ramsey, J. D.</creatorcontrib><title>In Silico Prediction of Mechanism of Action for Cancer Therapeutics</title><title>Molecular informatics</title><addtitle>Mol. Inf</addtitle><description>Cancer is currently the second leading cause of death in the U.S. and is projected to become the principal cause in the near future. While radiation and surgery are common cancer treatment methods, chemotherapy remains a key treatment option, offering distinct advantages over other therapy options, especially in the management of metastasized tumors. Understanding the mechanism of action (MoA) of current and newly developed drugs is crucial to ongoing drug development research. Foreknowledge of how a candidate drug works can yield a wealth of information, including which cancers a drug may treat more effectively based on the susceptibility of the cancer to drugs with the same MoA. Previous studies concerning prediction of MoA have relied on costly experimental measurements as input for their predictions. We have developed an a priori quantitative structure‐activity relationship (QSAR) for the in silico prediction of MoA without the need for experimental measurements. This model enables us to relate structural features of a chemical to its efficacy with a predictive accuracy of over 80 %, thus identifying the MoA of a candidate drug without costly, time‐consuming experimental tests.</description><subject>Cancer</subject><subject>Cancer therapies</subject><subject>In silico prediction</subject><subject>Mechanism of action</subject><subject>Prescription drugs</subject><subject>Quantitative structureactivity relationship</subject><issn>1868-1743</issn><issn>1868-1751</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r20AQhpeSUps01x6LIJdc5M5qpf04JiZ2TGM3kJRCLstqNcKb6MPZtWjz7yMh15Rcepqd5XkfhpeQLxRmFCD5VrumnCVAGQAw9YFMqeQypiKjJ8d3yibkLIQnGJiEC6k-kUkiUgnAsymZr5ro3lXOttGdx8LZvWubqC2jNdqtaVyoh-Vy_C5bH81NY9FHD1v0Zofd3tnwmXwsTRXw7DBPyc_F9cP8Jr79sVzNL29jm6ZSxUKyXEFmaGFRWlBG8sxaxDSnWckEExZpUtBcIKUcCszywqjEKsPKVKaCs1NyMXp3vn3pMOx17YLFqjINtl3QVILkwLhiPXr-Dn1qO9_012kqgKskAzoIZyNlfRuCx1LvvKuNf9UU9NCwHhrWx4b7wNeDtstrLI743z57QI3Ab1fh6390er3aLP6Vx2PWhT3-OWaNf9a8byfTvzZL_X3JHh-FAn3F3gBKD5Se</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Whitebay, E. A.</creator><creator>Gasem, K. A. M.</creator><creator>Neely, B. J.</creator><creator>Ramsey, J. D.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201308</creationdate><title>In Silico Prediction of Mechanism of Action for Cancer Therapeutics</title><author>Whitebay, E. A. ; Gasem, K. A. M. ; Neely, B. J. ; Ramsey, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4489-783b905a1dce8c09a865ccee4b15f3737ce12d1b7e1160de5bda92c9a3f484763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cancer</topic><topic>Cancer therapies</topic><topic>In silico prediction</topic><topic>Mechanism of action</topic><topic>Prescription drugs</topic><topic>Quantitative structureactivity relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitebay, E. A.</creatorcontrib><creatorcontrib>Gasem, K. A. M.</creatorcontrib><creatorcontrib>Neely, B. J.</creatorcontrib><creatorcontrib>Ramsey, J. D.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitebay, E. A.</au><au>Gasem, K. A. M.</au><au>Neely, B. J.</au><au>Ramsey, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Silico Prediction of Mechanism of Action for Cancer Therapeutics</atitle><jtitle>Molecular informatics</jtitle><addtitle>Mol. Inf</addtitle><date>2013-08</date><risdate>2013</risdate><volume>32</volume><issue>8</issue><spage>735</spage><epage>741</epage><pages>735-741</pages><issn>1868-1743</issn><eissn>1868-1751</eissn><abstract>Cancer is currently the second leading cause of death in the U.S. and is projected to become the principal cause in the near future. While radiation and surgery are common cancer treatment methods, chemotherapy remains a key treatment option, offering distinct advantages over other therapy options, especially in the management of metastasized tumors. Understanding the mechanism of action (MoA) of current and newly developed drugs is crucial to ongoing drug development research. Foreknowledge of how a candidate drug works can yield a wealth of information, including which cancers a drug may treat more effectively based on the susceptibility of the cancer to drugs with the same MoA. Previous studies concerning prediction of MoA have relied on costly experimental measurements as input for their predictions. We have developed an a priori quantitative structure‐activity relationship (QSAR) for the in silico prediction of MoA without the need for experimental measurements. This model enables us to relate structural features of a chemical to its efficacy with a predictive accuracy of over 80 %, thus identifying the MoA of a candidate drug without costly, time‐consuming experimental tests.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>27480065</pmid><doi>10.1002/minf.201300039</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-1743
ispartof Molecular informatics, 2013-08, Vol.32 (8), p.735-741
issn 1868-1743
1868-1751
language eng
recordid cdi_proquest_miscellaneous_1808603693
source Wiley
subjects Cancer
Cancer therapies
In silico prediction
Mechanism of action
Prescription drugs
Quantitative structureactivity relationship
title In Silico Prediction of Mechanism of Action for Cancer Therapeutics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Silico%20Prediction%20of%20Mechanism%20of%20Action%20for%20Cancer%20Therapeutics&rft.jtitle=Molecular%20informatics&rft.au=Whitebay,%20E.%20A.&rft.date=2013-08&rft.volume=32&rft.issue=8&rft.spage=735&rft.epage=741&rft.pages=735-741&rft.issn=1868-1743&rft.eissn=1868-1751&rft_id=info:doi/10.1002/minf.201300039&rft_dat=%3Cproquest_cross%3E3787627321%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4489-783b905a1dce8c09a865ccee4b15f3737ce12d1b7e1160de5bda92c9a3f484763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1706925016&rft_id=info:pmid/27480065&rfr_iscdi=true