Loading…
In Silico Prediction of Mechanism of Action for Cancer Therapeutics
Cancer is currently the second leading cause of death in the U.S. and is projected to become the principal cause in the near future. While radiation and surgery are common cancer treatment methods, chemotherapy remains a key treatment option, offering distinct advantages over other therapy options,...
Saved in:
Published in: | Molecular informatics 2013-08, Vol.32 (8), p.735-741 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4489-783b905a1dce8c09a865ccee4b15f3737ce12d1b7e1160de5bda92c9a3f484763 |
---|---|
cites | cdi_FETCH-LOGICAL-c4489-783b905a1dce8c09a865ccee4b15f3737ce12d1b7e1160de5bda92c9a3f484763 |
container_end_page | 741 |
container_issue | 8 |
container_start_page | 735 |
container_title | Molecular informatics |
container_volume | 32 |
creator | Whitebay, E. A. Gasem, K. A. M. Neely, B. J. Ramsey, J. D. |
description | Cancer is currently the second leading cause of death in the U.S. and is projected to become the principal cause in the near future. While radiation and surgery are common cancer treatment methods, chemotherapy remains a key treatment option, offering distinct advantages over other therapy options, especially in the management of metastasized tumors. Understanding the mechanism of action (MoA) of current and newly developed drugs is crucial to ongoing drug development research. Foreknowledge of how a candidate drug works can yield a wealth of information, including which cancers a drug may treat more effectively based on the susceptibility of the cancer to drugs with the same MoA. Previous studies concerning prediction of MoA have relied on costly experimental measurements as input for their predictions. We have developed an a priori quantitative structure‐activity relationship (QSAR) for the in silico prediction of MoA without the need for experimental measurements. This model enables us to relate structural features of a chemical to its efficacy with a predictive accuracy of over 80 %, thus identifying the MoA of a candidate drug without costly, time‐consuming experimental tests. |
doi_str_mv | 10.1002/minf.201300039 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808603693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3787627321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4489-783b905a1dce8c09a865ccee4b15f3737ce12d1b7e1160de5bda92c9a3f484763</originalsourceid><addsrcrecordid>eNqFkE1r20AQhpeSUps01x6LIJdc5M5qpf04JiZ2TGM3kJRCLstqNcKb6MPZtWjz7yMh15Rcepqd5XkfhpeQLxRmFCD5VrumnCVAGQAw9YFMqeQypiKjJ8d3yibkLIQnGJiEC6k-kUkiUgnAsymZr5ro3lXOttGdx8LZvWubqC2jNdqtaVyoh-Vy_C5bH81NY9FHD1v0Zofd3tnwmXwsTRXw7DBPyc_F9cP8Jr79sVzNL29jm6ZSxUKyXEFmaGFRWlBG8sxaxDSnWckEExZpUtBcIKUcCszywqjEKsPKVKaCs1NyMXp3vn3pMOx17YLFqjINtl3QVILkwLhiPXr-Dn1qO9_012kqgKskAzoIZyNlfRuCx1LvvKuNf9UU9NCwHhrWx4b7wNeDtstrLI743z57QI3Ab1fh6390er3aLP6Vx2PWhT3-OWaNf9a8byfTvzZL_X3JHh-FAn3F3gBKD5Se</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706925016</pqid></control><display><type>article</type><title>In Silico Prediction of Mechanism of Action for Cancer Therapeutics</title><source>Wiley</source><creator>Whitebay, E. A. ; Gasem, K. A. M. ; Neely, B. J. ; Ramsey, J. D.</creator><creatorcontrib>Whitebay, E. A. ; Gasem, K. A. M. ; Neely, B. J. ; Ramsey, J. D.</creatorcontrib><description>Cancer is currently the second leading cause of death in the U.S. and is projected to become the principal cause in the near future. While radiation and surgery are common cancer treatment methods, chemotherapy remains a key treatment option, offering distinct advantages over other therapy options, especially in the management of metastasized tumors. Understanding the mechanism of action (MoA) of current and newly developed drugs is crucial to ongoing drug development research. Foreknowledge of how a candidate drug works can yield a wealth of information, including which cancers a drug may treat more effectively based on the susceptibility of the cancer to drugs with the same MoA. Previous studies concerning prediction of MoA have relied on costly experimental measurements as input for their predictions. We have developed an a priori quantitative structure‐activity relationship (QSAR) for the in silico prediction of MoA without the need for experimental measurements. This model enables us to relate structural features of a chemical to its efficacy with a predictive accuracy of over 80 %, thus identifying the MoA of a candidate drug without costly, time‐consuming experimental tests.</description><identifier>ISSN: 1868-1743</identifier><identifier>EISSN: 1868-1751</identifier><identifier>DOI: 10.1002/minf.201300039</identifier><identifier>PMID: 27480065</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Cancer ; Cancer therapies ; In silico prediction ; Mechanism of action ; Prescription drugs ; Quantitative structureactivity relationship</subject><ispartof>Molecular informatics, 2013-08, Vol.32 (8), p.735-741</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4489-783b905a1dce8c09a865ccee4b15f3737ce12d1b7e1160de5bda92c9a3f484763</citedby><cites>FETCH-LOGICAL-c4489-783b905a1dce8c09a865ccee4b15f3737ce12d1b7e1160de5bda92c9a3f484763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27480065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitebay, E. A.</creatorcontrib><creatorcontrib>Gasem, K. A. M.</creatorcontrib><creatorcontrib>Neely, B. J.</creatorcontrib><creatorcontrib>Ramsey, J. D.</creatorcontrib><title>In Silico Prediction of Mechanism of Action for Cancer Therapeutics</title><title>Molecular informatics</title><addtitle>Mol. Inf</addtitle><description>Cancer is currently the second leading cause of death in the U.S. and is projected to become the principal cause in the near future. While radiation and surgery are common cancer treatment methods, chemotherapy remains a key treatment option, offering distinct advantages over other therapy options, especially in the management of metastasized tumors. Understanding the mechanism of action (MoA) of current and newly developed drugs is crucial to ongoing drug development research. Foreknowledge of how a candidate drug works can yield a wealth of information, including which cancers a drug may treat more effectively based on the susceptibility of the cancer to drugs with the same MoA. Previous studies concerning prediction of MoA have relied on costly experimental measurements as input for their predictions. We have developed an a priori quantitative structure‐activity relationship (QSAR) for the in silico prediction of MoA without the need for experimental measurements. This model enables us to relate structural features of a chemical to its efficacy with a predictive accuracy of over 80 %, thus identifying the MoA of a candidate drug without costly, time‐consuming experimental tests.</description><subject>Cancer</subject><subject>Cancer therapies</subject><subject>In silico prediction</subject><subject>Mechanism of action</subject><subject>Prescription drugs</subject><subject>Quantitative structureactivity relationship</subject><issn>1868-1743</issn><issn>1868-1751</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r20AQhpeSUps01x6LIJdc5M5qpf04JiZ2TGM3kJRCLstqNcKb6MPZtWjz7yMh15Rcepqd5XkfhpeQLxRmFCD5VrumnCVAGQAw9YFMqeQypiKjJ8d3yibkLIQnGJiEC6k-kUkiUgnAsymZr5ro3lXOttGdx8LZvWubqC2jNdqtaVyoh-Vy_C5bH81NY9FHD1v0Zofd3tnwmXwsTRXw7DBPyc_F9cP8Jr79sVzNL29jm6ZSxUKyXEFmaGFRWlBG8sxaxDSnWckEExZpUtBcIKUcCszywqjEKsPKVKaCs1NyMXp3vn3pMOx17YLFqjINtl3QVILkwLhiPXr-Dn1qO9_012kqgKskAzoIZyNlfRuCx1LvvKuNf9UU9NCwHhrWx4b7wNeDtstrLI743z57QI3Ab1fh6390er3aLP6Vx2PWhT3-OWaNf9a8byfTvzZL_X3JHh-FAn3F3gBKD5Se</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Whitebay, E. A.</creator><creator>Gasem, K. A. M.</creator><creator>Neely, B. J.</creator><creator>Ramsey, J. D.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201308</creationdate><title>In Silico Prediction of Mechanism of Action for Cancer Therapeutics</title><author>Whitebay, E. A. ; Gasem, K. A. M. ; Neely, B. J. ; Ramsey, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4489-783b905a1dce8c09a865ccee4b15f3737ce12d1b7e1160de5bda92c9a3f484763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cancer</topic><topic>Cancer therapies</topic><topic>In silico prediction</topic><topic>Mechanism of action</topic><topic>Prescription drugs</topic><topic>Quantitative structureactivity relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitebay, E. A.</creatorcontrib><creatorcontrib>Gasem, K. A. M.</creatorcontrib><creatorcontrib>Neely, B. J.</creatorcontrib><creatorcontrib>Ramsey, J. D.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitebay, E. A.</au><au>Gasem, K. A. M.</au><au>Neely, B. J.</au><au>Ramsey, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Silico Prediction of Mechanism of Action for Cancer Therapeutics</atitle><jtitle>Molecular informatics</jtitle><addtitle>Mol. Inf</addtitle><date>2013-08</date><risdate>2013</risdate><volume>32</volume><issue>8</issue><spage>735</spage><epage>741</epage><pages>735-741</pages><issn>1868-1743</issn><eissn>1868-1751</eissn><abstract>Cancer is currently the second leading cause of death in the U.S. and is projected to become the principal cause in the near future. While radiation and surgery are common cancer treatment methods, chemotherapy remains a key treatment option, offering distinct advantages over other therapy options, especially in the management of metastasized tumors. Understanding the mechanism of action (MoA) of current and newly developed drugs is crucial to ongoing drug development research. Foreknowledge of how a candidate drug works can yield a wealth of information, including which cancers a drug may treat more effectively based on the susceptibility of the cancer to drugs with the same MoA. Previous studies concerning prediction of MoA have relied on costly experimental measurements as input for their predictions. We have developed an a priori quantitative structure‐activity relationship (QSAR) for the in silico prediction of MoA without the need for experimental measurements. This model enables us to relate structural features of a chemical to its efficacy with a predictive accuracy of over 80 %, thus identifying the MoA of a candidate drug without costly, time‐consuming experimental tests.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>27480065</pmid><doi>10.1002/minf.201300039</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-1743 |
ispartof | Molecular informatics, 2013-08, Vol.32 (8), p.735-741 |
issn | 1868-1743 1868-1751 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808603693 |
source | Wiley |
subjects | Cancer Cancer therapies In silico prediction Mechanism of action Prescription drugs Quantitative structureactivity relationship |
title | In Silico Prediction of Mechanism of Action for Cancer Therapeutics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Silico%20Prediction%20of%20Mechanism%20of%20Action%20for%20Cancer%20Therapeutics&rft.jtitle=Molecular%20informatics&rft.au=Whitebay,%20E.%20A.&rft.date=2013-08&rft.volume=32&rft.issue=8&rft.spage=735&rft.epage=741&rft.pages=735-741&rft.issn=1868-1743&rft.eissn=1868-1751&rft_id=info:doi/10.1002/minf.201300039&rft_dat=%3Cproquest_cross%3E3787627321%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4489-783b905a1dce8c09a865ccee4b15f3737ce12d1b7e1160de5bda92c9a3f484763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1706925016&rft_id=info:pmid/27480065&rfr_iscdi=true |