Loading…
Histone variants: nuclear function and disease
Histone variants have emerged as important contributors to the regulation of chromatin structure and therefore of almost all DNA-based processes. Hence, these specialized proteins play important roles in transcriptional regulation, cell cycle progression, DNA repair, chromatin stability, chromosome...
Saved in:
Published in: | Current opinion in genetics & development 2016-04, Vol.37, p.82-89 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Histone variants have emerged as important contributors to the regulation of chromatin structure and therefore of almost all DNA-based processes. Hence, these specialized proteins play important roles in transcriptional regulation, cell cycle progression, DNA repair, chromatin stability, chromosome segregation and apoptosis. Due to their evident biological significance, it is not surprising that mutations or the deregulation of their expression levels can have severe implications for cellular functions that ultimately might contribute to or even drive disease development, most notably cancer. Besides the histones themselves, their respective chaperone/remodeling complexes needed for precise variant chromatin deposition, are consequently frequent targets in neoplasms and diverse diseases. In this review, we briefly summarize current understanding on the function of human/mammalian histone variants and their regulatory networks and highlight their roles in cancer development. |
---|---|
ISSN: | 0959-437X 1879-0380 |
DOI: | 10.1016/j.gde.2015.12.002 |