Loading…
Quantifying Uncertainties in Modeling Climate Change Impacts on Hydropower Production
Climate change will have large impacts on water resources and its predictions are fraught with uncertainties in West Africa. With the current global drive for renewable energy due to climate change, there is a need for understanding the effects of hydro-climatic changes on water resources and hydrop...
Saved in:
Published in: | Climate (Basel) 2016-09, Vol.4 (3), p.34-34 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Climate change will have large impacts on water resources and its predictions are fraught with uncertainties in West Africa. With the current global drive for renewable energy due to climate change, there is a need for understanding the effects of hydro-climatic changes on water resources and hydropower generation. A hydrological model was used to model runoff inflow into the largest hydroelectric dam (Kainji) in the Niger Basin (West Africa) under present and future conditions. Inflow to the reservoir was simulated using hydro-climatic data from a set of dynamically downscaled 8 global climate models (GCM) with two emission scenarios from the CORDEX-Africa regional downscaling experiment, driven with CMIP5 data. Observed records of the Kainji Lake were used to develop a hydroelectricity production model to simulate future energy production for the reservoir. Results indicate an increase in inflow into the reservoir and concurrent increases in hydropower production for the majority of the GCM data under the two scenarios. This analysis helps planning hydropower schemes for sustainable hydropower production. |
---|---|
ISSN: | 2225-1154 2225-1154 |
DOI: | 10.3390/cli4030034 |