Loading…

Erythropoietin directly stimulates osteoclast precursors and induces bone loss

ABSTRACT Erythropoietin (EPO) primarily regulates red blood cell formation, and EPO serum levels are increased on hypoxic stress (e.g., anemia and altitude). In addition to anemia, recent discoveries suggest new therapeutic indications for EPO, unrelated to erythropoiesis. We investigated the skelet...

Full description

Saved in:
Bibliographic Details
Published in:The FASEB journal 2015-05, Vol.29 (5), p.1890-1900
Main Authors: Hiram‐Bab, Sahar, Liron, Tamar, Deshet‐Unger, Naamit, Mittelman, Moshe, Gassmann, Max, Rauner, Martina, Franke, Kristin, Wielockx, Ben, Neumann, Drorit, Gabet, Yankel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Erythropoietin (EPO) primarily regulates red blood cell formation, and EPO serum levels are increased on hypoxic stress (e.g., anemia and altitude). In addition to anemia, recent discoveries suggest new therapeutic indications for EPO, unrelated to erythropoiesis. We investigated the skeletal role of EPO using several models of overexpression (Tg6 mice) and EPO administration (intermittent/continuous, high/low doses) in adult C57B16 female mice. Using microcomputed tomography, histology, and serum markers, we found that EPO induced a 32%‐61% trabecular bone loss caused by increased bone resorption (+60%‐88% osteoclast number) and reduced bone formation rate (‐19 to ‐74%; P < 0.05 throughout). EPO targeted the monocytic lineage by increasing the number of bone monocytes/macrophages, preosteoclasts, and mature osteoclasts. In contrast to the attenuated bone formation in vivo, EPO treatment in vitro did not inhibit osteoblast differentiation and activity, suggesting an indirect effect of EPO on osteoblasts. However, EPO had a direct effect on preosteoclasts by stimulating osteoclastogenesis in isolated cultures (+60%) via the Jak2 and PI3K pathways. In summary, our findings demonstrate that EPO negatively regulates bone mass and thus bears significant clinical implications for the potential management of patients with endogenously or therapeutically elevated EPO levels.—Hiram‐Bab, S., Liron, T., Deshet‐Unger, N., Mittelman, M., Gassmann, M., Rauner, M., Franke, K., Wielockx, B., Neumann, D., Gabet, Y. Erythropoietin directly stimulates osteoclast precursors and induces bone loss. FASEB J. 29, 1890‐1900 (2015). www.fasebj.org
ISSN:0892-6638
1530-6860
DOI:10.1096/fj.14-259085