Loading…

Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells

•Robust generation of basal forebrain cholinergic neurons (BFCNs) from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs).•Co-culture with human astrocytes enhances differentiation efficiency of BFCNs.•Purmorphamine replaces SHH to produce BFCNs.•Generation of human...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroscience methods 2016-06, Vol.266, p.42-49
Main Authors: Hu, Yao, Qu, Zhuang-yin, Cao, Shi-ying, Li, Qi, Ma, Lixiang, Krencik, Robert, Xu, Min, Liu, Yan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c467t-b08345b5500ea7c02378cba9c3a10d963565e73f7ee29c425d45e7c98348c5c43
cites cdi_FETCH-LOGICAL-c467t-b08345b5500ea7c02378cba9c3a10d963565e73f7ee29c425d45e7c98348c5c43
container_end_page 49
container_issue
container_start_page 42
container_title Journal of neuroscience methods
container_volume 266
creator Hu, Yao
Qu, Zhuang-yin
Cao, Shi-ying
Li, Qi
Ma, Lixiang
Krencik, Robert
Xu, Min
Liu, Yan
description •Robust generation of basal forebrain cholinergic neurons (BFCNs) from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs).•Co-culture with human astrocytes enhances differentiation efficiency of BFCNs.•Purmorphamine replaces SHH to produce BFCNs.•Generation of human BFCNs under xeno-free condition. Basal forebrain cholinergic neurons (BFCNs) play critical roles in learning, memory and cognition. Dysfunction or degeneration of BFCNs may connect to neuropathology, such as Alzheimer’s disease, Down’s syndrome and dementia. Generation of functional BFCNs may contribute to the studies of cell-based therapy and pathogenesis that is related to learning and memory deficits. Here we describe a detail method for robust generation of BFCNs from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). In this method, BFCN progenitors are patterned from hESC or hiPSC-derived primitive neuroepithelial cells, with the treatment of sonic hedgehog (SHH) or combination with its agonist Purmorphamine, and by co-culturing with human astrocytes. At day 20, ∼90% hPSC-derived progenitors expressed NKX2.1, which is a transcriptional marker for MGE. Moreover, around 40% of NKX2.1+ cells co-expressed OLIG2 and ∼15% of NKX2.1+ cells co-expressed ISLET1, which are ventral markers. At day 35, ∼40% neurons robustly express ChAT, most of which are co-labeled with NKX2.1, ISLET1 and FOXG1, indicating the basal forebrain-like identity. At day 45, these neurons express mature neuronal markers MAP2, Synapsin, and VAChT. In this method, undefined conditions including genetic modification or cell-sorting are avoided. As a choice, feeder free conditions are used to avoid ingredients of animal origin. Moreover, Purmorphamine can be substituted for SHH to induce ventral progenitors effectively and economically. We provide an efficient method to generate BFCNs from multiple hPSC lines, which offers the potential application for disease modeling and pharmacological studies.
doi_str_mv 10.1016/j.jneumeth.2016.03.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808659124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027016300231</els_id><sourcerecordid>1808659124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-b08345b5500ea7c02378cba9c3a10d963565e73f7ee29c425d45e7c98348c5c43</originalsourceid><addsrcrecordid>eNqNkU9v3CAQxVHVqNlu8hVWHHuxOxgD9i1Vmn_SSr00Um4I43GWlQ1bsCv125fNJr02p9EMvzcPzSNkw6BkwOTXfbn3uEw478oq9yXwEpj6QFasUVUhVfP0kazygyigUnBOPqe0B4C6BfmJnOcRl5yxFTHfXUQ7Y097NwwY0c_OzC54GgbamWRGOoSIXTTOU7sLo_MYn52l2T0Gn-gQw0R3y2Q8PYxLdIcw5x00zThRi-OYLsjZYMaEl691TR5vb35e3xfbH3cP19-2ha2lmosOGl6LTggANMpCxVVjO9Nabhj0reRCClR8UIhVa-tK9HXubZtVjRW25mvy5bT3EMOvBdOsJ5eOPzAew5I0a6CRomXVO1DVQi1rDiyj8oTaGFKKOOhDdJOJfzQDfUxC7_VbEvqYhAaucxJZuHn1WLoJ-3-yt9Nn4OoEYD7Kb4dRJ-vQW-xfEtF9cP_z-At_7J52</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790464301</pqid></control><display><type>article</type><title>Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hu, Yao ; Qu, Zhuang-yin ; Cao, Shi-ying ; Li, Qi ; Ma, Lixiang ; Krencik, Robert ; Xu, Min ; Liu, Yan</creator><creatorcontrib>Hu, Yao ; Qu, Zhuang-yin ; Cao, Shi-ying ; Li, Qi ; Ma, Lixiang ; Krencik, Robert ; Xu, Min ; Liu, Yan</creatorcontrib><description>•Robust generation of basal forebrain cholinergic neurons (BFCNs) from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs).•Co-culture with human astrocytes enhances differentiation efficiency of BFCNs.•Purmorphamine replaces SHH to produce BFCNs.•Generation of human BFCNs under xeno-free condition. Basal forebrain cholinergic neurons (BFCNs) play critical roles in learning, memory and cognition. Dysfunction or degeneration of BFCNs may connect to neuropathology, such as Alzheimer’s disease, Down’s syndrome and dementia. Generation of functional BFCNs may contribute to the studies of cell-based therapy and pathogenesis that is related to learning and memory deficits. Here we describe a detail method for robust generation of BFCNs from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). In this method, BFCN progenitors are patterned from hESC or hiPSC-derived primitive neuroepithelial cells, with the treatment of sonic hedgehog (SHH) or combination with its agonist Purmorphamine, and by co-culturing with human astrocytes. At day 20, ∼90% hPSC-derived progenitors expressed NKX2.1, which is a transcriptional marker for MGE. Moreover, around 40% of NKX2.1+ cells co-expressed OLIG2 and ∼15% of NKX2.1+ cells co-expressed ISLET1, which are ventral markers. At day 35, ∼40% neurons robustly express ChAT, most of which are co-labeled with NKX2.1, ISLET1 and FOXG1, indicating the basal forebrain-like identity. At day 45, these neurons express mature neuronal markers MAP2, Synapsin, and VAChT. In this method, undefined conditions including genetic modification or cell-sorting are avoided. As a choice, feeder free conditions are used to avoid ingredients of animal origin. Moreover, Purmorphamine can be substituted for SHH to induce ventral progenitors effectively and economically. We provide an efficient method to generate BFCNs from multiple hPSC lines, which offers the potential application for disease modeling and pharmacological studies.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2016.03.017</identifier><identifier>PMID: 27036311</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adaptor Proteins, Signal Transducing - metabolism ; Astrocytes - cytology ; Astrocytes - physiology ; Basal Forebrain - cytology ; Basal Forebrain - physiology ; Basal forebrain cholinergic neurons ; Cell Culture Techniques - instrumentation ; Cell Culture Techniques - methods ; Cell Line ; Choline O-Acetyltransferase - metabolism ; Coculture Techniques - instrumentation ; Coculture Techniques - methods ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - physiology ; Forkhead Transcription Factors - metabolism ; Human embryonic stem cells ; Human induced pluripotent stem cells ; Humans ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - physiology ; Medial ganglionic eminence ; Nerve Tissue Proteins - metabolism ; Nestin - metabolism ; Neural differentiation ; Neurogenesis - physiology ; Neurons - cytology ; Neurons - physiology ; PAX6 Transcription Factor - metabolism ; SOXB1 Transcription Factors - metabolism ; Thyroid Nuclear Factor 1 - metabolism</subject><ispartof>Journal of neuroscience methods, 2016-06, Vol.266, p.42-49</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-b08345b5500ea7c02378cba9c3a10d963565e73f7ee29c425d45e7c98348c5c43</citedby><cites>FETCH-LOGICAL-c467t-b08345b5500ea7c02378cba9c3a10d963565e73f7ee29c425d45e7c98348c5c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27036311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yao</creatorcontrib><creatorcontrib>Qu, Zhuang-yin</creatorcontrib><creatorcontrib>Cao, Shi-ying</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Ma, Lixiang</creatorcontrib><creatorcontrib>Krencik, Robert</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><title>Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>•Robust generation of basal forebrain cholinergic neurons (BFCNs) from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs).•Co-culture with human astrocytes enhances differentiation efficiency of BFCNs.•Purmorphamine replaces SHH to produce BFCNs.•Generation of human BFCNs under xeno-free condition. Basal forebrain cholinergic neurons (BFCNs) play critical roles in learning, memory and cognition. Dysfunction or degeneration of BFCNs may connect to neuropathology, such as Alzheimer’s disease, Down’s syndrome and dementia. Generation of functional BFCNs may contribute to the studies of cell-based therapy and pathogenesis that is related to learning and memory deficits. Here we describe a detail method for robust generation of BFCNs from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). In this method, BFCN progenitors are patterned from hESC or hiPSC-derived primitive neuroepithelial cells, with the treatment of sonic hedgehog (SHH) or combination with its agonist Purmorphamine, and by co-culturing with human astrocytes. At day 20, ∼90% hPSC-derived progenitors expressed NKX2.1, which is a transcriptional marker for MGE. Moreover, around 40% of NKX2.1+ cells co-expressed OLIG2 and ∼15% of NKX2.1+ cells co-expressed ISLET1, which are ventral markers. At day 35, ∼40% neurons robustly express ChAT, most of which are co-labeled with NKX2.1, ISLET1 and FOXG1, indicating the basal forebrain-like identity. At day 45, these neurons express mature neuronal markers MAP2, Synapsin, and VAChT. In this method, undefined conditions including genetic modification or cell-sorting are avoided. As a choice, feeder free conditions are used to avoid ingredients of animal origin. Moreover, Purmorphamine can be substituted for SHH to induce ventral progenitors effectively and economically. We provide an efficient method to generate BFCNs from multiple hPSC lines, which offers the potential application for disease modeling and pharmacological studies.</description><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Astrocytes - cytology</subject><subject>Astrocytes - physiology</subject><subject>Basal Forebrain - cytology</subject><subject>Basal Forebrain - physiology</subject><subject>Basal forebrain cholinergic neurons</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Line</subject><subject>Choline O-Acetyltransferase - metabolism</subject><subject>Coculture Techniques - instrumentation</subject><subject>Coculture Techniques - methods</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - physiology</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Human embryonic stem cells</subject><subject>Human induced pluripotent stem cells</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - physiology</subject><subject>Medial ganglionic eminence</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nestin - metabolism</subject><subject>Neural differentiation</subject><subject>Neurogenesis - physiology</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>PAX6 Transcription Factor - metabolism</subject><subject>SOXB1 Transcription Factors - metabolism</subject><subject>Thyroid Nuclear Factor 1 - metabolism</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU9v3CAQxVHVqNlu8hVWHHuxOxgD9i1Vmn_SSr00Um4I43GWlQ1bsCv125fNJr02p9EMvzcPzSNkw6BkwOTXfbn3uEw478oq9yXwEpj6QFasUVUhVfP0kazygyigUnBOPqe0B4C6BfmJnOcRl5yxFTHfXUQ7Y097NwwY0c_OzC54GgbamWRGOoSIXTTOU7sLo_MYn52l2T0Gn-gQw0R3y2Q8PYxLdIcw5x00zThRi-OYLsjZYMaEl691TR5vb35e3xfbH3cP19-2ha2lmosOGl6LTggANMpCxVVjO9Nabhj0reRCClR8UIhVa-tK9HXubZtVjRW25mvy5bT3EMOvBdOsJ5eOPzAew5I0a6CRomXVO1DVQi1rDiyj8oTaGFKKOOhDdJOJfzQDfUxC7_VbEvqYhAaucxJZuHn1WLoJ-3-yt9Nn4OoEYD7Kb4dRJ-vQW-xfEtF9cP_z-At_7J52</recordid><startdate>20160615</startdate><enddate>20160615</enddate><creator>Hu, Yao</creator><creator>Qu, Zhuang-yin</creator><creator>Cao, Shi-ying</creator><creator>Li, Qi</creator><creator>Ma, Lixiang</creator><creator>Krencik, Robert</creator><creator>Xu, Min</creator><creator>Liu, Yan</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20160615</creationdate><title>Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells</title><author>Hu, Yao ; Qu, Zhuang-yin ; Cao, Shi-ying ; Li, Qi ; Ma, Lixiang ; Krencik, Robert ; Xu, Min ; Liu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-b08345b5500ea7c02378cba9c3a10d963565e73f7ee29c425d45e7c98348c5c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Astrocytes - cytology</topic><topic>Astrocytes - physiology</topic><topic>Basal Forebrain - cytology</topic><topic>Basal Forebrain - physiology</topic><topic>Basal forebrain cholinergic neurons</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Line</topic><topic>Choline O-Acetyltransferase - metabolism</topic><topic>Coculture Techniques - instrumentation</topic><topic>Coculture Techniques - methods</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - physiology</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Human embryonic stem cells</topic><topic>Human induced pluripotent stem cells</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - physiology</topic><topic>Medial ganglionic eminence</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nestin - metabolism</topic><topic>Neural differentiation</topic><topic>Neurogenesis - physiology</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>PAX6 Transcription Factor - metabolism</topic><topic>SOXB1 Transcription Factors - metabolism</topic><topic>Thyroid Nuclear Factor 1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yao</creatorcontrib><creatorcontrib>Qu, Zhuang-yin</creatorcontrib><creatorcontrib>Cao, Shi-ying</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Ma, Lixiang</creatorcontrib><creatorcontrib>Krencik, Robert</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yao</au><au>Qu, Zhuang-yin</au><au>Cao, Shi-ying</au><au>Li, Qi</au><au>Ma, Lixiang</au><au>Krencik, Robert</au><au>Xu, Min</au><au>Liu, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2016-06-15</date><risdate>2016</risdate><volume>266</volume><spage>42</spage><epage>49</epage><pages>42-49</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>•Robust generation of basal forebrain cholinergic neurons (BFCNs) from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs).•Co-culture with human astrocytes enhances differentiation efficiency of BFCNs.•Purmorphamine replaces SHH to produce BFCNs.•Generation of human BFCNs under xeno-free condition. Basal forebrain cholinergic neurons (BFCNs) play critical roles in learning, memory and cognition. Dysfunction or degeneration of BFCNs may connect to neuropathology, such as Alzheimer’s disease, Down’s syndrome and dementia. Generation of functional BFCNs may contribute to the studies of cell-based therapy and pathogenesis that is related to learning and memory deficits. Here we describe a detail method for robust generation of BFCNs from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). In this method, BFCN progenitors are patterned from hESC or hiPSC-derived primitive neuroepithelial cells, with the treatment of sonic hedgehog (SHH) or combination with its agonist Purmorphamine, and by co-culturing with human astrocytes. At day 20, ∼90% hPSC-derived progenitors expressed NKX2.1, which is a transcriptional marker for MGE. Moreover, around 40% of NKX2.1+ cells co-expressed OLIG2 and ∼15% of NKX2.1+ cells co-expressed ISLET1, which are ventral markers. At day 35, ∼40% neurons robustly express ChAT, most of which are co-labeled with NKX2.1, ISLET1 and FOXG1, indicating the basal forebrain-like identity. At day 45, these neurons express mature neuronal markers MAP2, Synapsin, and VAChT. In this method, undefined conditions including genetic modification or cell-sorting are avoided. As a choice, feeder free conditions are used to avoid ingredients of animal origin. Moreover, Purmorphamine can be substituted for SHH to induce ventral progenitors effectively and economically. We provide an efficient method to generate BFCNs from multiple hPSC lines, which offers the potential application for disease modeling and pharmacological studies.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27036311</pmid><doi>10.1016/j.jneumeth.2016.03.017</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2016-06, Vol.266, p.42-49
issn 0165-0270
1872-678X
language eng
recordid cdi_proquest_miscellaneous_1808659124
source ScienceDirect Freedom Collection 2022-2024
subjects Adaptor Proteins, Signal Transducing - metabolism
Astrocytes - cytology
Astrocytes - physiology
Basal Forebrain - cytology
Basal Forebrain - physiology
Basal forebrain cholinergic neurons
Cell Culture Techniques - instrumentation
Cell Culture Techniques - methods
Cell Line
Choline O-Acetyltransferase - metabolism
Coculture Techniques - instrumentation
Coculture Techniques - methods
Embryonic Stem Cells - cytology
Embryonic Stem Cells - physiology
Forkhead Transcription Factors - metabolism
Human embryonic stem cells
Human induced pluripotent stem cells
Humans
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - physiology
Medial ganglionic eminence
Nerve Tissue Proteins - metabolism
Nestin - metabolism
Neural differentiation
Neurogenesis - physiology
Neurons - cytology
Neurons - physiology
PAX6 Transcription Factor - metabolism
SOXB1 Transcription Factors - metabolism
Thyroid Nuclear Factor 1 - metabolism
title Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A17%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directed%20differentiation%20of%20basal%20forebrain%20cholinergic%20neurons%20from%20human%20pluripotent%20stem%20cells&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Hu,%20Yao&rft.date=2016-06-15&rft.volume=266&rft.spage=42&rft.epage=49&rft.pages=42-49&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2016.03.017&rft_dat=%3Cproquest_cross%3E1808659124%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-b08345b5500ea7c02378cba9c3a10d963565e73f7ee29c425d45e7c98348c5c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1790464301&rft_id=info:pmid/27036311&rfr_iscdi=true