Loading…
Characterization of organophosphorus flame retardants’ sorption on building materials and consumer products
Better understanding the transport mechanisms of organophosphorus flame-retardants (OPFRs) in the residential environment is important to more accurately estimate their indoor exposure and develop risk management strategies that protect human health. This study describes an improved dual small chamb...
Saved in:
Published in: | Atmospheric environment (1994) 2016-09, Vol.140, p.333-341 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Better understanding the transport mechanisms of organophosphorus flame-retardants (OPFRs) in the residential environment is important to more accurately estimate their indoor exposure and develop risk management strategies that protect human health. This study describes an improved dual small chamber testing method to characterize the sorption of OPFRs on indoor building materials and consumer products. The OPFRs studied were tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP). The test materials and products used as sinks include concrete, ceiling tile, vinyl flooring, carpet, latex painted gypsum wallboard, open cell polyurethane foam, mattress pad and liner, polyester clothing, cotton clothing, and uniform shirt. During the tests, the amount of OPFRs absorbed by the materials at different exposure times was determined simultaneously. OPFRs air concentrations at the inlet and inside the test chamber were monitored. The data were used to rank the sorption strength of the OPFRs on different materials. In general, building materials exhibited relatively stronger sorption strength than clothing textiles. The material-air partition and material phase diffusion coefficients were estimated by fitting a sink model to the sorption concentration data for twelve materials with three OPFRs. They are in the range of 2.72 × 105 to 3.99 × 108 (dimensionless) for the material-air partition coefficients and 1.13 × 10−14 to 5.83 × 10−9 (m2/h) for the material phase diffusion coefficients.
•A chamber method was improved and applied to study OPFRs sink effect.•Sorption of OPFRs on building materials and consumer products were investigated.•Building materials have stronger sorption strength of OPFRs than clothing textiles.•OPFRs material-air partition and material diffusion coefficients were estimated.•The method can be applied to other SVOCs. |
---|---|
ISSN: | 1352-2310 1873-2844 |
DOI: | 10.1016/j.atmosenv.2016.06.019 |