Loading…
Using isotopic dilution to assess chemical extraction of labile Ni, Cu, Zn, Cd and Pb in soils
Chemical extractants used to measure labile soil metal must ideally select for and solubilise the labile fraction, with minimal solubilisation of non-labile metal. We assessed four extractants (0.43 M HNO3, 0.43 M CH3COOH, 0.05 M Na2H2EDTA and 1 M CaCl2) against these requirements. For soils contami...
Saved in:
Published in: | Chemosphere (Oxford) 2016-07, Vol.155, p.534-541 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chemical extractants used to measure labile soil metal must ideally select for and solubilise the labile fraction, with minimal solubilisation of non-labile metal. We assessed four extractants (0.43 M HNO3, 0.43 M CH3COOH, 0.05 M Na2H2EDTA and 1 M CaCl2) against these requirements. For soils contaminated by contrasting sources, we compared isotopically exchangeable Ni, Cu, Zn, Cd and Pb (EValue, mg kg−1), with the concentrations of metal solubilised by the chemical extractants (MExt, mg kg−1). Crucially, we also determined isotopically exchangeable metal in the soil–extractant systems (EExt, mg kg−1). Thus ‘EExt – EValue’ quantifies the concentration of mobilised non-labile metal, while ‘EExt – MExt’ represents adsorbed labile metal in the presence of the extractant. Extraction with CaCl2 consistently underestimated EValue for Ni, Cu, Zn and Pb, while providing a reasonable estimate of EValue for Cd. In contrast, extraction with HNO3 both consistently mobilised non-labile metal and overestimated the EValue. Extraction with CH3COOH appeared to provide a good estimate of EValue for Cd; however, this was the net outcome of incomplete solubilisation of labile metal, and concurrent mobilisation of non-labile metal by the extractant (MExt EValue). The Na2H2EDTA extractant mobilised some non-labile metal in three of the four soils, but consistently solubilised the entire labile fraction for all soil-metal combinations (MExt ≈ EExt). Comparison of EValue, MExt and EExt provides a rigorous means of assessing the underlying action of soil chemical extraction methods and could be used to refine long-standing soil extraction methodologies.
•Stable isotope dilution can inform underlying mechanisms during chemical extraction.•Agreement between extracted metal and E values is sometimes fortuitous.•Powerful extractants (0.05 M EDTA and 0.43 M Nitric acid) solubilise non-labile metal.•Weaker extractants (0.43 M CH3COOH and 1 M CaCl2) fail to solubilise all labile metal.•E values measured within on the soil extraction reveal non-labile metal mobilisation. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2016.04.096 |