Loading…

Ficolin-2 inhibits hepatitis C virus infection, whereas apolipoprotein E3 mediates viral immune escape

Human ficolin-2 (L-ficolin/p35) is a lectin-complement pathway activator that is present in normal human plasma and is associated with infectious diseases; however, little is known regarding the roles and mechanisms of ficolin-2 during chronic hepatitis C virus (HCV) infection. In this study, we fou...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2014-07, Vol.193 (2), p.783-796
Main Authors: Zhao, Yinglan, Ren, Yushan, Zhang, Xuping, Zhao, Ping, Tao, Wanyin, Zhong, Jin, Li, Qiao, Zhang, Xiao-Lian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human ficolin-2 (L-ficolin/p35) is a lectin-complement pathway activator that is present in normal human plasma and is associated with infectious diseases; however, little is known regarding the roles and mechanisms of ficolin-2 during chronic hepatitis C virus (HCV) infection. In this study, we found that ficolin-2 inhibits the entry of HCV at an early stage of viral infection, regardless of the viral genotype. Ficolin-2 neutralized and inhibited the initial attachment and infection of HCV by binding to the HCV envelope surface glycoproteins E1 and E2, blocking HCV attachment to low-density lipoprotein receptor (LDLR) and scavenger receptor B1, and weakly interfering with CD81 receptor attachment. However, no interference with claudin-1 and occludin receptor attachment was observed. The C-terminal fibrinogen domain (201-313 aa) of ficolin-2 was identified as the critical binding region for the HCV-E1-E2 N-glycans, playing a critical role in the anti-HCV activity. More importantly, we found that apolipoprotein E (ApoE)3, which is enriched in the low-density fractions of HCV RNA-containing particles, promotes HCV infection and inhibits ficolin-2-mediated antiviral activity. ApoE3, but not ApoE2 and ApoE4, blocked the interaction between ficolin-2 and HCV-E2. Our data suggest that the HCV entry inhibitor ficolin-2 is a novel and promising antiviral innate immune molecule, whereas ApoE3 blocks the effect of ficolin-2 and mediates an immune escape mechanism during chronic HCV infection. HCV may be neutralized using compounds directed against the lipoprotein moiety of the viral particle, and ApoE3 may be a new target to combat HCV infection.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1302563