Loading…
Comparative metagenomics reveals a diverse range of antimicrobial resistance genes in effluents entering a river catchment
The aquatic environment has been implicated as a reservoir for antimicrobial resistance genes (ARGs). In order to identify sources that are contributing to these gene reservoirs, it is crucial to assess effluents that are entering the aquatic environment. Here we describe a metagenomic assessment fo...
Saved in:
Published in: | Water science and technology 2016-04, Vol.73 (7), p.1541-1549 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-6abede4bf66964683fdfb81c5d555af459b5486322fd26a9a799dc77d5be97043 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-6abede4bf66964683fdfb81c5d555af459b5486322fd26a9a799dc77d5be97043 |
container_end_page | 1549 |
container_issue | 7 |
container_start_page | 1541 |
container_title | Water science and technology |
container_volume | 73 |
creator | Rowe, Will Verner-Jeffreys, David W Baker-Austin, Craig Ryan, Jim J Maskell, Duncan J Pearce, Gareth P |
description | The aquatic environment has been implicated as a reservoir for antimicrobial resistance genes (ARGs). In order to identify sources that are contributing to these gene reservoirs, it is crucial to assess effluents that are entering the aquatic environment. Here we describe a metagenomic assessment for two types of effluent entering a river catchment. We investigated the diversity and abundance of resistance genes, mobile genetic elements (MGEs) and pathogenic bacteria. Findings were normalised to a background sample of river source water. Our results show that effluent contributed an array of genes to the river catchment, the most abundant being tetracycline resistance genes tetC and tetW from farm effluents and the sulfonamide resistance gene sul2 from wastewater treatment plant (WWTP) effluents. In nine separate samples taken across 3 years, we found 53 different genes conferring resistance to seven classes of antimicrobial. Compared to the background sample taken up river from effluent entry, the average abundance of genes was three times greater in the farm effluent and two times greater in the WWTP effluent. We conclude that effluents disperse ARGs, MGEs and pathogenic bacteria within a river catchment, thereby contributing to environmental reservoirs of ARGs. |
doi_str_mv | 10.2166/wst.2015.634 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808674042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808674042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-6abede4bf66964683fdfb81c5d555af459b5486322fd26a9a799dc77d5be97043</originalsourceid><addsrcrecordid>eNqFkT1PHDEQhq0IFA6SLjWyRJMie_jb6zI6kYB0Eg3Ulnd3fDHa9V5sLxH8enwCUqRJM5bGj9_R-EHoCyVrRpW6_JPLmhEq14qLD2hFjVGN0ZwdoRVhmjeUMX6CTnN-IIRoLshHdMI0kUIzuULPm3nau-RKeAQ8QXE7iPMU-owTPIIbM3Z4qHcpA04u7gDPHrtYQmXS3AU3VjCHXFzsAdfHkHGIGLwfF4gl41oghbirOemQg3tX-l9TbX9Cx74OgM9v5xm6_3F1t7lutrc_bzbft03PDSmNch0MIDqvlFFCtdwPvmtpLwcppfNCmk6KVnHG_MCUM04bM_RaD7IDo4ngZ-jra-4-zb8XyMVOIfcwji7CvGRLW9IqLYhg_0d1SySlROmKXvyDPsxLinURSw2TWrZMmUp9e6XqZ-WcwNt9CpNLT5YSe9Bnqz570Gervoqfv4Uu3QTDX_jdF38BUt6XaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925758269</pqid></control><display><type>article</type><title>Comparative metagenomics reveals a diverse range of antimicrobial resistance genes in effluents entering a river catchment</title><source>Alma/SFX Local Collection</source><creator>Rowe, Will ; Verner-Jeffreys, David W ; Baker-Austin, Craig ; Ryan, Jim J ; Maskell, Duncan J ; Pearce, Gareth P</creator><creatorcontrib>Rowe, Will ; Verner-Jeffreys, David W ; Baker-Austin, Craig ; Ryan, Jim J ; Maskell, Duncan J ; Pearce, Gareth P</creatorcontrib><description>The aquatic environment has been implicated as a reservoir for antimicrobial resistance genes (ARGs). In order to identify sources that are contributing to these gene reservoirs, it is crucial to assess effluents that are entering the aquatic environment. Here we describe a metagenomic assessment for two types of effluent entering a river catchment. We investigated the diversity and abundance of resistance genes, mobile genetic elements (MGEs) and pathogenic bacteria. Findings were normalised to a background sample of river source water. Our results show that effluent contributed an array of genes to the river catchment, the most abundant being tetracycline resistance genes tetC and tetW from farm effluents and the sulfonamide resistance gene sul2 from wastewater treatment plant (WWTP) effluents. In nine separate samples taken across 3 years, we found 53 different genes conferring resistance to seven classes of antimicrobial. Compared to the background sample taken up river from effluent entry, the average abundance of genes was three times greater in the farm effluent and two times greater in the WWTP effluent. We conclude that effluents disperse ARGs, MGEs and pathogenic bacteria within a river catchment, thereby contributing to environmental reservoirs of ARGs.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2015.634</identifier><identifier>PMID: 27054725</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Abundance ; Agricultural wastes ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Antiinfectives and antibacterials ; Antimicrobial agents ; Antimicrobial resistance ; Aquatic environment ; Bacteria ; Bacteria - drug effects ; Bacteria - genetics ; Catchment area ; Deoxyribonucleic acid ; DNA ; Drug resistance ; Drug Resistance, Multiple, Bacterial - genetics ; Effluents ; Environmental science ; Freshwater ; Genes ; Genomes ; Metagenomics ; Pathogenic bacteria ; Population number ; Reservoirs ; River catchments ; Rivers ; Rivers - microbiology ; Search engines ; Sulfonamides ; Waste Water - microbiology ; Wastewater ; Wastewater treatment ; Wastewater treatment plants ; Water Pollutants, Chemical</subject><ispartof>Water science and technology, 2016-04, Vol.73 (7), p.1541-1549</ispartof><rights>Copyright IWA Publishing Apr 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-6abede4bf66964683fdfb81c5d555af459b5486322fd26a9a799dc77d5be97043</citedby><cites>FETCH-LOGICAL-c390t-6abede4bf66964683fdfb81c5d555af459b5486322fd26a9a799dc77d5be97043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27054725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rowe, Will</creatorcontrib><creatorcontrib>Verner-Jeffreys, David W</creatorcontrib><creatorcontrib>Baker-Austin, Craig</creatorcontrib><creatorcontrib>Ryan, Jim J</creatorcontrib><creatorcontrib>Maskell, Duncan J</creatorcontrib><creatorcontrib>Pearce, Gareth P</creatorcontrib><title>Comparative metagenomics reveals a diverse range of antimicrobial resistance genes in effluents entering a river catchment</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>The aquatic environment has been implicated as a reservoir for antimicrobial resistance genes (ARGs). In order to identify sources that are contributing to these gene reservoirs, it is crucial to assess effluents that are entering the aquatic environment. Here we describe a metagenomic assessment for two types of effluent entering a river catchment. We investigated the diversity and abundance of resistance genes, mobile genetic elements (MGEs) and pathogenic bacteria. Findings were normalised to a background sample of river source water. Our results show that effluent contributed an array of genes to the river catchment, the most abundant being tetracycline resistance genes tetC and tetW from farm effluents and the sulfonamide resistance gene sul2 from wastewater treatment plant (WWTP) effluents. In nine separate samples taken across 3 years, we found 53 different genes conferring resistance to seven classes of antimicrobial. Compared to the background sample taken up river from effluent entry, the average abundance of genes was three times greater in the farm effluent and two times greater in the WWTP effluent. We conclude that effluents disperse ARGs, MGEs and pathogenic bacteria within a river catchment, thereby contributing to environmental reservoirs of ARGs.</description><subject>Abundance</subject><subject>Agricultural wastes</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>Antimicrobial resistance</subject><subject>Aquatic environment</subject><subject>Bacteria</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - genetics</subject><subject>Catchment area</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Drug resistance</subject><subject>Drug Resistance, Multiple, Bacterial - genetics</subject><subject>Effluents</subject><subject>Environmental science</subject><subject>Freshwater</subject><subject>Genes</subject><subject>Genomes</subject><subject>Metagenomics</subject><subject>Pathogenic bacteria</subject><subject>Population number</subject><subject>Reservoirs</subject><subject>River catchments</subject><subject>Rivers</subject><subject>Rivers - microbiology</subject><subject>Search engines</subject><subject>Sulfonamides</subject><subject>Waste Water - microbiology</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><subject>Wastewater treatment plants</subject><subject>Water Pollutants, Chemical</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PHDEQhq0IFA6SLjWyRJMie_jb6zI6kYB0Eg3Ulnd3fDHa9V5sLxH8enwCUqRJM5bGj9_R-EHoCyVrRpW6_JPLmhEq14qLD2hFjVGN0ZwdoRVhmjeUMX6CTnN-IIRoLshHdMI0kUIzuULPm3nau-RKeAQ8QXE7iPMU-owTPIIbM3Z4qHcpA04u7gDPHrtYQmXS3AU3VjCHXFzsAdfHkHGIGLwfF4gl41oghbirOemQg3tX-l9TbX9Cx74OgM9v5xm6_3F1t7lutrc_bzbft03PDSmNch0MIDqvlFFCtdwPvmtpLwcppfNCmk6KVnHG_MCUM04bM_RaD7IDo4ngZ-jra-4-zb8XyMVOIfcwji7CvGRLW9IqLYhg_0d1SySlROmKXvyDPsxLinURSw2TWrZMmUp9e6XqZ-WcwNt9CpNLT5YSe9Bnqz570Gervoqfv4Uu3QTDX_jdF38BUt6XaQ</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Rowe, Will</creator><creator>Verner-Jeffreys, David W</creator><creator>Baker-Austin, Craig</creator><creator>Ryan, Jim J</creator><creator>Maskell, Duncan J</creator><creator>Pearce, Gareth P</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20160401</creationdate><title>Comparative metagenomics reveals a diverse range of antimicrobial resistance genes in effluents entering a river catchment</title><author>Rowe, Will ; Verner-Jeffreys, David W ; Baker-Austin, Craig ; Ryan, Jim J ; Maskell, Duncan J ; Pearce, Gareth P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-6abede4bf66964683fdfb81c5d555af459b5486322fd26a9a799dc77d5be97043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Abundance</topic><topic>Agricultural wastes</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>Antimicrobial resistance</topic><topic>Aquatic environment</topic><topic>Bacteria</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - genetics</topic><topic>Catchment area</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Drug resistance</topic><topic>Drug Resistance, Multiple, Bacterial - genetics</topic><topic>Effluents</topic><topic>Environmental science</topic><topic>Freshwater</topic><topic>Genes</topic><topic>Genomes</topic><topic>Metagenomics</topic><topic>Pathogenic bacteria</topic><topic>Population number</topic><topic>Reservoirs</topic><topic>River catchments</topic><topic>Rivers</topic><topic>Rivers - microbiology</topic><topic>Search engines</topic><topic>Sulfonamides</topic><topic>Waste Water - microbiology</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><topic>Wastewater treatment plants</topic><topic>Water Pollutants, Chemical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowe, Will</creatorcontrib><creatorcontrib>Verner-Jeffreys, David W</creatorcontrib><creatorcontrib>Baker-Austin, Craig</creatorcontrib><creatorcontrib>Ryan, Jim J</creatorcontrib><creatorcontrib>Maskell, Duncan J</creatorcontrib><creatorcontrib>Pearce, Gareth P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowe, Will</au><au>Verner-Jeffreys, David W</au><au>Baker-Austin, Craig</au><au>Ryan, Jim J</au><au>Maskell, Duncan J</au><au>Pearce, Gareth P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative metagenomics reveals a diverse range of antimicrobial resistance genes in effluents entering a river catchment</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>73</volume><issue>7</issue><spage>1541</spage><epage>1549</epage><pages>1541-1549</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>The aquatic environment has been implicated as a reservoir for antimicrobial resistance genes (ARGs). In order to identify sources that are contributing to these gene reservoirs, it is crucial to assess effluents that are entering the aquatic environment. Here we describe a metagenomic assessment for two types of effluent entering a river catchment. We investigated the diversity and abundance of resistance genes, mobile genetic elements (MGEs) and pathogenic bacteria. Findings were normalised to a background sample of river source water. Our results show that effluent contributed an array of genes to the river catchment, the most abundant being tetracycline resistance genes tetC and tetW from farm effluents and the sulfonamide resistance gene sul2 from wastewater treatment plant (WWTP) effluents. In nine separate samples taken across 3 years, we found 53 different genes conferring resistance to seven classes of antimicrobial. Compared to the background sample taken up river from effluent entry, the average abundance of genes was three times greater in the farm effluent and two times greater in the WWTP effluent. We conclude that effluents disperse ARGs, MGEs and pathogenic bacteria within a river catchment, thereby contributing to environmental reservoirs of ARGs.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>27054725</pmid><doi>10.2166/wst.2015.634</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2016-04, Vol.73 (7), p.1541-1549 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808674042 |
source | Alma/SFX Local Collection |
subjects | Abundance Agricultural wastes Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Antibiotics Antiinfectives and antibacterials Antimicrobial agents Antimicrobial resistance Aquatic environment Bacteria Bacteria - drug effects Bacteria - genetics Catchment area Deoxyribonucleic acid DNA Drug resistance Drug Resistance, Multiple, Bacterial - genetics Effluents Environmental science Freshwater Genes Genomes Metagenomics Pathogenic bacteria Population number Reservoirs River catchments Rivers Rivers - microbiology Search engines Sulfonamides Waste Water - microbiology Wastewater Wastewater treatment Wastewater treatment plants Water Pollutants, Chemical |
title | Comparative metagenomics reveals a diverse range of antimicrobial resistance genes in effluents entering a river catchment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20metagenomics%20reveals%20a%20diverse%20range%20of%20antimicrobial%20resistance%20genes%20in%20effluents%20entering%20a%20river%20catchment&rft.jtitle=Water%20science%20and%20technology&rft.au=Rowe,%20Will&rft.date=2016-04-01&rft.volume=73&rft.issue=7&rft.spage=1541&rft.epage=1549&rft.pages=1541-1549&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2015.634&rft_dat=%3Cproquest_cross%3E1808674042%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-6abede4bf66964683fdfb81c5d555af459b5486322fd26a9a799dc77d5be97043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1925758269&rft_id=info:pmid/27054725&rfr_iscdi=true |