Loading…

A General Method of Empirical Q-matrix Validation

In contrast to unidimensional item response models that postulate a single underlying proficiency, cognitive diagnosis models (CDMs) posit multiple, discrete skills or attributes, thus allowing CDMs to provide a finer-grained assessment of examinees’ test performance. A common component of CDMs for...

Full description

Saved in:
Bibliographic Details
Published in:Psychometrika 2016-06, Vol.81 (2), p.253-273
Main Authors: de la Torre, Jimmy, Chiu, Chia-Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c471t-236d2357e365705814446d168e1e1d5bc034bf4c6e869171f9738631b199856c3
cites cdi_FETCH-LOGICAL-c471t-236d2357e365705814446d168e1e1d5bc034bf4c6e869171f9738631b199856c3
container_end_page 273
container_issue 2
container_start_page 253
container_title Psychometrika
container_volume 81
creator de la Torre, Jimmy
Chiu, Chia-Yi
description In contrast to unidimensional item response models that postulate a single underlying proficiency, cognitive diagnosis models (CDMs) posit multiple, discrete skills or attributes, thus allowing CDMs to provide a finer-grained assessment of examinees’ test performance. A common component of CDMs for specifying the attributes required for each item is the Q-matrix. Although construction of Q-matrix is typically performed by domain experts, it nonetheless, to a large extent, remains a subjective process, and misspecifications in the Q-matrix, if left unchecked, can have important practical implications. To address this concern, this paper proposes a discrimination index that can be used with a wide class of CDM subsumed by the generalized deterministic input, noisy “and” gate model to empirically validate the Q-matrix specifications by identifying and replacing misspecified entries in the Q-matrix. The rationale for using the index as the basis for a proposed validation method is provided in the form of mathematical proofs to several relevant lemmas and a theorem. The feasibility of the proposed method was examined using simulated data generated under various conditions. The proposed method is illustrated using fraction subtraction data.
doi_str_mv 10.1007/s11336-015-9467-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808681238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4067521391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-236d2357e365705814446d168e1e1d5bc034bf4c6e869171f9738631b199856c3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotn78AC-y4MVLdGYnm49jKVoFRQT1Gra7Wd2yHzXZgv57U6oigngKTJ55Z-Zh7AjhDAHUeUAkkhww40ZIxfUWG6OWwMFo2GZjACJOmNKI7YWwAACDWu-yUZoZETvlmOEkmbnO-bxJbt3w0pdJXyUX7bL2dRFr97zNB1-_JU95U5f5UPfdAdup8ia4w893nz1eXjxMr_jN3ex6OrnhhVA48JRkmVKmHMlMQaZRCCFLlNqhwzKbF0BiXolCOi0NKqyMIi0J52iMzmRB--x0k7v0_evKhcG2dShc0-Sd61fBogYtdTxO_48qk5IioSiiJ7_QRb_yXTxkTcU0AplFCjdU4fsQvKvs0tdt7t8tgl2rtxv1Nqq3a_V2vcTxZ_Jq3rryu-PLdQTSDRDiV_fs_I_Rf6Z-AC6BiWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791233065</pqid></control><display><type>article</type><title>A General Method of Empirical Q-matrix Validation</title><source>ABI/INFORM Collection</source><source>Springer Link</source><source>ProQuest Social Science Premium Collection</source><source>Education Collection</source><creator>de la Torre, Jimmy ; Chiu, Chia-Yi</creator><creatorcontrib>de la Torre, Jimmy ; Chiu, Chia-Yi</creatorcontrib><description>In contrast to unidimensional item response models that postulate a single underlying proficiency, cognitive diagnosis models (CDMs) posit multiple, discrete skills or attributes, thus allowing CDMs to provide a finer-grained assessment of examinees’ test performance. A common component of CDMs for specifying the attributes required for each item is the Q-matrix. Although construction of Q-matrix is typically performed by domain experts, it nonetheless, to a large extent, remains a subjective process, and misspecifications in the Q-matrix, if left unchecked, can have important practical implications. To address this concern, this paper proposes a discrimination index that can be used with a wide class of CDM subsumed by the generalized deterministic input, noisy “and” gate model to empirically validate the Q-matrix specifications by identifying and replacing misspecified entries in the Q-matrix. The rationale for using the index as the basis for a proposed validation method is provided in the form of mathematical proofs to several relevant lemmas and a theorem. The feasibility of the proposed method was examined using simulated data generated under various conditions. The proposed method is illustrated using fraction subtraction data.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-015-9467-8</identifier><identifier>PMID: 25943366</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adolescent ; Algorithms ; Assessment ; Behavioral Science and Psychology ; Child ; Cognition ; Educational Measurement ; Educational Psychology ; Feasibility Studies ; Humanities ; Humans ; Inferences ; Item Response Theory ; Law ; Methods ; Models, Psychological ; Models, Statistical ; Psychology ; Psychometrics ; Quantitative psychology ; Random variables ; Reproducibility of Results ; Resistance (Psychology) ; Statistical Theory and Methods ; Statistics as Topic ; Statistics for Social Sciences ; Test Items ; Test Theory ; Testing and Evaluation</subject><ispartof>Psychometrika, 2016-06, Vol.81 (2), p.253-273</ispartof><rights>The Psychometric Society 2015</rights><rights>The Psychometric Society 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-236d2357e365705814446d168e1e1d5bc034bf4c6e869171f9738631b199856c3</citedby><cites>FETCH-LOGICAL-c471t-236d2357e365705814446d168e1e1d5bc034bf4c6e869171f9738631b199856c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1791233065/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1791233065?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,21378,21394,27924,27925,33611,33612,33877,33878,36060,36061,43733,43880,44363,74221,74397,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25943366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de la Torre, Jimmy</creatorcontrib><creatorcontrib>Chiu, Chia-Yi</creatorcontrib><title>A General Method of Empirical Q-matrix Validation</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><addtitle>Psychometrika</addtitle><description>In contrast to unidimensional item response models that postulate a single underlying proficiency, cognitive diagnosis models (CDMs) posit multiple, discrete skills or attributes, thus allowing CDMs to provide a finer-grained assessment of examinees’ test performance. A common component of CDMs for specifying the attributes required for each item is the Q-matrix. Although construction of Q-matrix is typically performed by domain experts, it nonetheless, to a large extent, remains a subjective process, and misspecifications in the Q-matrix, if left unchecked, can have important practical implications. To address this concern, this paper proposes a discrimination index that can be used with a wide class of CDM subsumed by the generalized deterministic input, noisy “and” gate model to empirically validate the Q-matrix specifications by identifying and replacing misspecified entries in the Q-matrix. The rationale for using the index as the basis for a proposed validation method is provided in the form of mathematical proofs to several relevant lemmas and a theorem. The feasibility of the proposed method was examined using simulated data generated under various conditions. The proposed method is illustrated using fraction subtraction data.</description><subject>Adolescent</subject><subject>Algorithms</subject><subject>Assessment</subject><subject>Behavioral Science and Psychology</subject><subject>Child</subject><subject>Cognition</subject><subject>Educational Measurement</subject><subject>Educational Psychology</subject><subject>Feasibility Studies</subject><subject>Humanities</subject><subject>Humans</subject><subject>Inferences</subject><subject>Item Response Theory</subject><subject>Law</subject><subject>Methods</subject><subject>Models, Psychological</subject><subject>Models, Statistical</subject><subject>Psychology</subject><subject>Psychometrics</subject><subject>Quantitative psychology</subject><subject>Random variables</subject><subject>Reproducibility of Results</subject><subject>Resistance (Psychology)</subject><subject>Statistical Theory and Methods</subject><subject>Statistics as Topic</subject><subject>Statistics for Social Sciences</subject><subject>Test Items</subject><subject>Test Theory</subject><subject>Testing and Evaluation</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>M0C</sourceid><sourceid>M0P</sourceid><recordid>eNqFkE1LAzEQhoMotn78AC-y4MVLdGYnm49jKVoFRQT1Gra7Wd2yHzXZgv57U6oigngKTJ55Z-Zh7AjhDAHUeUAkkhww40ZIxfUWG6OWwMFo2GZjACJOmNKI7YWwAACDWu-yUZoZETvlmOEkmbnO-bxJbt3w0pdJXyUX7bL2dRFr97zNB1-_JU95U5f5UPfdAdup8ia4w893nz1eXjxMr_jN3ex6OrnhhVA48JRkmVKmHMlMQaZRCCFLlNqhwzKbF0BiXolCOi0NKqyMIi0J52iMzmRB--x0k7v0_evKhcG2dShc0-Sd61fBogYtdTxO_48qk5IioSiiJ7_QRb_yXTxkTcU0AplFCjdU4fsQvKvs0tdt7t8tgl2rtxv1Nqq3a_V2vcTxZ_Jq3rryu-PLdQTSDRDiV_fs_I_Rf6Z-AC6BiWc</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>de la Torre, Jimmy</creator><creator>Chiu, Chia-Yi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TK</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20160601</creationdate><title>A General Method of Empirical Q-matrix Validation</title><author>de la Torre, Jimmy ; Chiu, Chia-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-236d2357e365705814446d168e1e1d5bc034bf4c6e869171f9738631b199856c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adolescent</topic><topic>Algorithms</topic><topic>Assessment</topic><topic>Behavioral Science and Psychology</topic><topic>Child</topic><topic>Cognition</topic><topic>Educational Measurement</topic><topic>Educational Psychology</topic><topic>Feasibility Studies</topic><topic>Humanities</topic><topic>Humans</topic><topic>Inferences</topic><topic>Item Response Theory</topic><topic>Law</topic><topic>Methods</topic><topic>Models, Psychological</topic><topic>Models, Statistical</topic><topic>Psychology</topic><topic>Psychometrics</topic><topic>Quantitative psychology</topic><topic>Random variables</topic><topic>Reproducibility of Results</topic><topic>Resistance (Psychology)</topic><topic>Statistical Theory and Methods</topic><topic>Statistics as Topic</topic><topic>Statistics for Social Sciences</topic><topic>Test Items</topic><topic>Test Theory</topic><topic>Testing and Evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de la Torre, Jimmy</creatorcontrib><creatorcontrib>Chiu, Chia-Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Proquest Health &amp; Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Social Science Premium Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Collection</collection><collection>Education Database (ProQuest)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de la Torre, Jimmy</au><au>Chiu, Chia-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Method of Empirical Q-matrix Validation</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><addtitle>Psychometrika</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>81</volume><issue>2</issue><spage>253</spage><epage>273</epage><pages>253-273</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><abstract>In contrast to unidimensional item response models that postulate a single underlying proficiency, cognitive diagnosis models (CDMs) posit multiple, discrete skills or attributes, thus allowing CDMs to provide a finer-grained assessment of examinees’ test performance. A common component of CDMs for specifying the attributes required for each item is the Q-matrix. Although construction of Q-matrix is typically performed by domain experts, it nonetheless, to a large extent, remains a subjective process, and misspecifications in the Q-matrix, if left unchecked, can have important practical implications. To address this concern, this paper proposes a discrimination index that can be used with a wide class of CDM subsumed by the generalized deterministic input, noisy “and” gate model to empirically validate the Q-matrix specifications by identifying and replacing misspecified entries in the Q-matrix. The rationale for using the index as the basis for a proposed validation method is provided in the form of mathematical proofs to several relevant lemmas and a theorem. The feasibility of the proposed method was examined using simulated data generated under various conditions. The proposed method is illustrated using fraction subtraction data.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>25943366</pmid><doi>10.1007/s11336-015-9467-8</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-3123
ispartof Psychometrika, 2016-06, Vol.81 (2), p.253-273
issn 0033-3123
1860-0980
language eng
recordid cdi_proquest_miscellaneous_1808681238
source ABI/INFORM Collection; Springer Link; ProQuest Social Science Premium Collection; Education Collection
subjects Adolescent
Algorithms
Assessment
Behavioral Science and Psychology
Child
Cognition
Educational Measurement
Educational Psychology
Feasibility Studies
Humanities
Humans
Inferences
Item Response Theory
Law
Methods
Models, Psychological
Models, Statistical
Psychology
Psychometrics
Quantitative psychology
Random variables
Reproducibility of Results
Resistance (Psychology)
Statistical Theory and Methods
Statistics as Topic
Statistics for Social Sciences
Test Items
Test Theory
Testing and Evaluation
title A General Method of Empirical Q-matrix Validation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Method%20of%20Empirical%20Q-matrix%20Validation&rft.jtitle=Psychometrika&rft.au=de%20la%20Torre,%20Jimmy&rft.date=2016-06-01&rft.volume=81&rft.issue=2&rft.spage=253&rft.epage=273&rft.pages=253-273&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/s11336-015-9467-8&rft_dat=%3Cproquest_cross%3E4067521391%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-236d2357e365705814446d168e1e1d5bc034bf4c6e869171f9738631b199856c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1791233065&rft_id=info:pmid/25943366&rfr_iscdi=true