Loading…
Using the SBRC Assay to Predict Lead Relative Bioavailability in Urban Soils: Contaminant Source and Correlation Model
Using in vitro bioaccessibility assays to predict Pb relative bioavailability (RBA) in contaminated soils has been demonstrated, however, limited research was performed on urban soils having lower Pb levels. In this study, 162 soils from urban parks in 27 capital cities in China were measured for Pb...
Saved in:
Published in: | Environmental science & technology 2016-05, Vol.50 (10), p.4989-4996 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using in vitro bioaccessibility assays to predict Pb relative bioavailability (RBA) in contaminated soils has been demonstrated, however, limited research was performed on urban soils having lower Pb levels. In this study, 162 soils from urban parks in 27 capital cities in China were measured for Pb bioaccessibility using the SBRC assay, with Pb-RBA in 38 subsamples being measured using a mouse-kidney assay. Total Pb concentrations in soils were 9.3–1198 mg kg–1, with 92% of the soils having Pb concentrations 100 mg kg–1. On the basis of a stable isotope fingerprinting technique, coal combustion ash was identified as the major Pb source, contributing to the increased Pb bioaccessibility with increasing soil Pb concentration. Lead-RBA in soils was 17–87%, showing a strong linear correlation with Pb bioaccessibility (r 2 = 0.61), with cross validation of the correlation based on random subsampling and leave-one-out approaches yielding low prediction errors. On the basis of the large sample size of 38 soils, this study demonstrated that the Pb-RBA predictive capability of the SBRC assay can be extended from mining/smelting impacted soils to urban soils with lower Pb levels. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.6b00480 |