Loading…

The effect of elevations in internal temperature on event-related potentials during a simple cognitive task in humans

The effect of hyperthermia on cognitive function remains equivocal, perhaps because of methodological discrepancy. Using electroencephalographic event-related potentials (ERPs), we tested the hypothesis that a passive heat stress impairs cognitive processing. Thirteen volunteers performed repeated a...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2016-07, Vol.311 (1), p.R33-R38
Main Authors: Shibasaki, Manabu, Namba, Mari, Oshiro, Misaki, Crandall, Craig G, Nakata, Hiroki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of hyperthermia on cognitive function remains equivocal, perhaps because of methodological discrepancy. Using electroencephalographic event-related potentials (ERPs), we tested the hypothesis that a passive heat stress impairs cognitive processing. Thirteen volunteers performed repeated auditory oddball paradigms under two thermal conditions, normothermic time control and heat stress, on different days. For the heat stress trial, these paradigms were performed at preheat stress (i.e., normothermic) baseline, when esophageal temperature had increased by ∼0.8°C, when esophageal temperature had increased by ∼2.0°C, and during cooling following the heat stress. The reaction time and ERPs were recorded in each session. For the time control trial, subjects performed the auditory oddball paradigms at approximately the same time interval as they did in the heat stress trial. The peak latency and amplitude of an indicator of auditory processing (N100) were not altered regardless of thermal conditions. An indicator of stimulus classification/evaluation time (latency of P300) and the reaction time were shortened during heat stress; moreover an indicator of cognitive processing (the amplitude of P300) was significantly reduced during severe heat stress (8.3 ± 1.3 μV) relative to the baseline (12.2 ± 1.0 μV, P < 0.01). No changes in these indexes occurred during the time control trial. During subsequent whole body cooling, the amplitude of P300 remained reduced, and the reaction time and latency of P300 remained shortened. These results suggest that excessive elevations in internal temperature reduce cognitive processing but promote classification time.
ISSN:0363-6119
1522-1490
DOI:10.1152/ajpregu.00086.2016