Loading…

The Notch signaling pathway controls short-lived effector CD8+ T cell differentiation but is dispensable for memory generation

Following an infection, naive CD8(+) T cells expand and differentiate into two main populations of effectors: short-lived effector cells (SLECs) and memory precursor effector cells (MPECs). There is limited understanding of the molecular mechanism and cellular processes governing this cell fate. Not...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2015-06, Vol.194 (12), p.5654-5662
Main Authors: Mathieu, Mélissa, Duval, Frédéric, Daudelin, Jean-François, Labrecque, Nathalie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Following an infection, naive CD8(+) T cells expand and differentiate into two main populations of effectors: short-lived effector cells (SLECs) and memory precursor effector cells (MPECs). There is limited understanding of the molecular mechanism and cellular processes governing this cell fate. Notch is a key regulator of cell fate decision relevant in many immunological pathways. In this study, we add to the role of Notch in cell fate decision and demonstrate that the Notch signaling pathway controls the MPEC/SLEC differentiation choice following both Listeria infection and dendritic cell immunization of mice. Although fewer SLECs were generated, Notch deficiency did not alter the rate of memory CD8(+) T cell generation. Moreover, we reveal that the Notch signaling pathway plays a context-dependent role for optimal cytokine production by effector CD8(+) T cells. Together, our results unravel critical functions for the Notch signaling pathway during effector CD8(+) T cell differentiation.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1402837