Loading…

Accumulation and sub-cellular partitioning of metals and As in the clam Venerupis corrugata: Different strategies towards different elements

The main goal of the present study was to assess accumulation, tolerance and sub-cellular partitioning of As, Hg, Cd and Pb in Venerupis corrugata. Results showed an increase of elements accumulation in V. corrugata with the increase of exposure. However, organisms presented higher capacity to accum...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) 2016-08, Vol.156, p.128-134
Main Authors: Velez, Cátia, Figueira, Etelvina, Soares, Amadeu M.V.M., Freitas, Rosa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main goal of the present study was to assess accumulation, tolerance and sub-cellular partitioning of As, Hg, Cd and Pb in Venerupis corrugata. Results showed an increase of elements accumulation in V. corrugata with the increase of exposure. However, organisms presented higher capacity to accumulate Hg, Cd and Pb (BCF ≥ 12.8) than As (BCF ≤ 2.1) and higher accumulation rate for Cd and Pb than for Hg and As. With the increase of Hg exposure concentrations clams tended to increase the amount of metal bound to metal-sensitive fractions, which may explain the mortality recorded at the highest exposure concentration. Cd sub-cellular partitioning showed that with the increase of exposure concentrations V. corrugata increased the amount of metal in the cellular debris fraction, probably bound to the cellular membranes which explain the mortality recorded at the highest concentration. Results on As partitioning demonstrated that most of the metalloid was associated with fractions in the biologically detoxified metal compartment (BDM). Since high mortality was observed in clams exposed to As our results may indicate that this strategy was not enough to prevent clams from toxic effects and mortality occurred. When exposed to Pb most of the metal was in the BDM compartment, but in this case the metal was mostly in the metal-rich granules fraction which seemed to be efficient in preventing clams from toxicity, and no mortality was recorded. Our study further revealed that As and Hg were the most available elements to be biomagnified through the food chain. •Clams showed a higher capacity to accumulate Hg, Cd, and Pb (BCF > 13) than As (BCF 
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2016.04.067