Loading…

A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean

Marine dissolved organic matter (DOM) contains one of the largest exchangeable organic carbon pools on Earth. Riverine input represents an important source of DOM to the oceans, yet much remains to be learned about the fate of the DOM linking terrestrial to oceanic carbon cycles through rivers at th...

Full description

Saved in:
Bibliographic Details
Published in:Global biogeochemical cycles 2016-05, Vol.30 (5), p.689-699
Main Authors: Medeiros, Patricia M., Seidel, Michael, Niggemann, Jutta, Spencer, Robert G. M., Hernes, Peter J., Yager, Patricia L., Miller, William L., Dittmar, Thorsten, Hansell, Dennis A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4711-754ba344778ba5aea48f7591d7b37f23f180de9edcb10663c21e10afca5f93f33
cites cdi_FETCH-LOGICAL-a4711-754ba344778ba5aea48f7591d7b37f23f180de9edcb10663c21e10afca5f93f33
container_end_page 699
container_issue 5
container_start_page 689
container_title Global biogeochemical cycles
container_volume 30
creator Medeiros, Patricia M.
Seidel, Michael
Niggemann, Jutta
Spencer, Robert G. M.
Hernes, Peter J.
Yager, Patricia L.
Miller, William L.
Dittmar, Thorsten
Hansell, Dennis A.
description Marine dissolved organic matter (DOM) contains one of the largest exchangeable organic carbon pools on Earth. Riverine input represents an important source of DOM to the oceans, yet much remains to be learned about the fate of the DOM linking terrestrial to oceanic carbon cycles through rivers at the global scale. Here we use ultrahigh‐resolution mass spectrometry to identify 184 molecular formulae that are indicators of riverine inputs (referred to as t‐Peaks) and to track their distribution in the deep North Atlantic and North Pacific Oceans. The t‐Peaks were found to be enriched in the Amazon River, to be highly correlated with known tracers of terrigenous input, and to be observed in all samples from four different rivers characterized by vastly different landscapes and vegetation coverage spanning equatorial (Amazon and Congo), subtropical (Altamaha), and Arctic (Kolyma) regions. Their distribution reveals that terrigenous organic matter is injected into the deep ocean by the global meridional overturning circulation, indicating that a fraction of the terrigenous DOM introduced by rivers contributes to the DOM pool observed in the deep ocean and to the storage of terrigenous organic carbon. This novel molecular approach can be used to further constrain the transfer of DOM from land to sea, especially considering that Fourier transform ion cyclotron resonance mass spectrometer analysis is becoming increasingly frequent in studies characterizing the molecular composition of DOM in lakes, rivers, and the ocean. Key Points 184 molecular formulae indicative of riverine inputs (t‐Peaks) have been identified t‐Peaks are correlated with tracers of terrigenous input and observed in multiple rivers worldwide t‐Peaks revealed injection of terrigenous DOM into deep ocean by meridional overturning circulation
doi_str_mv 10.1002/2015GB005320
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808710954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4087156451</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4711-754ba344778ba5aea48f7591d7b37f23f180de9edcb10663c21e10afca5f93f33</originalsourceid><addsrcrecordid>eNp90T1PHDEQgGELJRIXoOMHWEqTIgsef6zXJZzgQEKiIbU15x0fi_bWF3uPiH-P0aWIUlBN88zolYaxcxAXIIS8lALM6loIo6Q4YgtwWjdOSv2FLUTXtU0rVXvMvpXyIgRoY9yC-Ss-pVca-TaNFPYjZo67XU4YnnlMmc8ZwzBt-Ew5Dxua0r7wfiglja_U85Q3OA2Bb3GugA_TnPj8TLwn2vEUCKdT9jXiWOjs7zxhv25vnpZ3zcPj6n559dCgtgCNNXqNSmtruzUaJNRdtMZBb9fKRqkidKInR31Yg2hbFSQQCIwBTXQqKnXCfhzu1vbfeyqz3w4l0DjiRLXZ1_3OgnBGV_r9P_qS9nmqdR4cAKgOpPhUWWdcC52yVf08qJBTKZmi3-Vhi_nNg_AfP_H__qRyeeB_hpHePrV-db2UQtecd5Wwi7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795961837</pqid></control><display><type>article</type><title>A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean</title><source>Wiley</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Medeiros, Patricia M. ; Seidel, Michael ; Niggemann, Jutta ; Spencer, Robert G. M. ; Hernes, Peter J. ; Yager, Patricia L. ; Miller, William L. ; Dittmar, Thorsten ; Hansell, Dennis A.</creator><creatorcontrib>Medeiros, Patricia M. ; Seidel, Michael ; Niggemann, Jutta ; Spencer, Robert G. M. ; Hernes, Peter J. ; Yager, Patricia L. ; Miller, William L. ; Dittmar, Thorsten ; Hansell, Dennis A.</creatorcontrib><description>Marine dissolved organic matter (DOM) contains one of the largest exchangeable organic carbon pools on Earth. Riverine input represents an important source of DOM to the oceans, yet much remains to be learned about the fate of the DOM linking terrestrial to oceanic carbon cycles through rivers at the global scale. Here we use ultrahigh‐resolution mass spectrometry to identify 184 molecular formulae that are indicators of riverine inputs (referred to as t‐Peaks) and to track their distribution in the deep North Atlantic and North Pacific Oceans. The t‐Peaks were found to be enriched in the Amazon River, to be highly correlated with known tracers of terrigenous input, and to be observed in all samples from four different rivers characterized by vastly different landscapes and vegetation coverage spanning equatorial (Amazon and Congo), subtropical (Altamaha), and Arctic (Kolyma) regions. Their distribution reveals that terrigenous organic matter is injected into the deep ocean by the global meridional overturning circulation, indicating that a fraction of the terrigenous DOM introduced by rivers contributes to the DOM pool observed in the deep ocean and to the storage of terrigenous organic carbon. This novel molecular approach can be used to further constrain the transfer of DOM from land to sea, especially considering that Fourier transform ion cyclotron resonance mass spectrometer analysis is becoming increasingly frequent in studies characterizing the molecular composition of DOM in lakes, rivers, and the ocean. Key Points 184 molecular formulae indicative of riverine inputs (t‐Peaks) have been identified t‐Peaks are correlated with tracers of terrigenous input and observed in multiple rivers worldwide t‐Peaks revealed injection of terrigenous DOM into deep ocean by meridional overturning circulation</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>DOI: 10.1002/2015GB005320</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Atlantic Meridional Overturning Circulation (AMOC) ; Carbon ; Carbon cycle ; Circulation ; Composition ; Correlation ; Cycles ; Cyclotron resonance ; deep North Atlantic Ocean ; deep North Pacific Ocean ; Dissolved organic matter ; Distribution ; Earth ; Enrichment ; Equatorial regions ; Formulae ; Fourier analysis ; Fourier transforms ; Freshwater ; FT‐ICR MS ; Identification ; Indicators ; Injection ; Lakes ; Landscape ; Marine ; Mass spectrometry ; Mass spectroscopy ; meridional overturning circulation ; Ocean circulation ; Oceans ; Organic carbon ; Pools ; Resonance ; Rivers ; Spectrometry ; Storage ; terrigenous DOM ; Tracers ; Tracking ; Vegetation ; Water analysis</subject><ispartof>Global biogeochemical cycles, 2016-05, Vol.30 (5), p.689-699</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4711-754ba344778ba5aea48f7591d7b37f23f180de9edcb10663c21e10afca5f93f33</citedby><cites>FETCH-LOGICAL-a4711-754ba344778ba5aea48f7591d7b37f23f180de9edcb10663c21e10afca5f93f33</cites><orcidid>0000-0003-1237-9233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GB005320$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GB005320$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Medeiros, Patricia M.</creatorcontrib><creatorcontrib>Seidel, Michael</creatorcontrib><creatorcontrib>Niggemann, Jutta</creatorcontrib><creatorcontrib>Spencer, Robert G. M.</creatorcontrib><creatorcontrib>Hernes, Peter J.</creatorcontrib><creatorcontrib>Yager, Patricia L.</creatorcontrib><creatorcontrib>Miller, William L.</creatorcontrib><creatorcontrib>Dittmar, Thorsten</creatorcontrib><creatorcontrib>Hansell, Dennis A.</creatorcontrib><title>A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean</title><title>Global biogeochemical cycles</title><description>Marine dissolved organic matter (DOM) contains one of the largest exchangeable organic carbon pools on Earth. Riverine input represents an important source of DOM to the oceans, yet much remains to be learned about the fate of the DOM linking terrestrial to oceanic carbon cycles through rivers at the global scale. Here we use ultrahigh‐resolution mass spectrometry to identify 184 molecular formulae that are indicators of riverine inputs (referred to as t‐Peaks) and to track their distribution in the deep North Atlantic and North Pacific Oceans. The t‐Peaks were found to be enriched in the Amazon River, to be highly correlated with known tracers of terrigenous input, and to be observed in all samples from four different rivers characterized by vastly different landscapes and vegetation coverage spanning equatorial (Amazon and Congo), subtropical (Altamaha), and Arctic (Kolyma) regions. Their distribution reveals that terrigenous organic matter is injected into the deep ocean by the global meridional overturning circulation, indicating that a fraction of the terrigenous DOM introduced by rivers contributes to the DOM pool observed in the deep ocean and to the storage of terrigenous organic carbon. This novel molecular approach can be used to further constrain the transfer of DOM from land to sea, especially considering that Fourier transform ion cyclotron resonance mass spectrometer analysis is becoming increasingly frequent in studies characterizing the molecular composition of DOM in lakes, rivers, and the ocean. Key Points 184 molecular formulae indicative of riverine inputs (t‐Peaks) have been identified t‐Peaks are correlated with tracers of terrigenous input and observed in multiple rivers worldwide t‐Peaks revealed injection of terrigenous DOM into deep ocean by meridional overturning circulation</description><subject>Atlantic Meridional Overturning Circulation (AMOC)</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Circulation</subject><subject>Composition</subject><subject>Correlation</subject><subject>Cycles</subject><subject>Cyclotron resonance</subject><subject>deep North Atlantic Ocean</subject><subject>deep North Pacific Ocean</subject><subject>Dissolved organic matter</subject><subject>Distribution</subject><subject>Earth</subject><subject>Enrichment</subject><subject>Equatorial regions</subject><subject>Formulae</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Freshwater</subject><subject>FT‐ICR MS</subject><subject>Identification</subject><subject>Indicators</subject><subject>Injection</subject><subject>Lakes</subject><subject>Landscape</subject><subject>Marine</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>meridional overturning circulation</subject><subject>Ocean circulation</subject><subject>Oceans</subject><subject>Organic carbon</subject><subject>Pools</subject><subject>Resonance</subject><subject>Rivers</subject><subject>Spectrometry</subject><subject>Storage</subject><subject>terrigenous DOM</subject><subject>Tracers</subject><subject>Tracking</subject><subject>Vegetation</subject><subject>Water analysis</subject><issn>0886-6236</issn><issn>1944-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90T1PHDEQgGELJRIXoOMHWEqTIgsef6zXJZzgQEKiIbU15x0fi_bWF3uPiH-P0aWIUlBN88zolYaxcxAXIIS8lALM6loIo6Q4YgtwWjdOSv2FLUTXtU0rVXvMvpXyIgRoY9yC-Ss-pVca-TaNFPYjZo67XU4YnnlMmc8ZwzBt-Ew5Dxua0r7wfiglja_U85Q3OA2Bb3GugA_TnPj8TLwn2vEUCKdT9jXiWOjs7zxhv25vnpZ3zcPj6n559dCgtgCNNXqNSmtruzUaJNRdtMZBb9fKRqkidKInR31Yg2hbFSQQCIwBTXQqKnXCfhzu1vbfeyqz3w4l0DjiRLXZ1_3OgnBGV_r9P_qS9nmqdR4cAKgOpPhUWWdcC52yVf08qJBTKZmi3-Vhi_nNg_AfP_H__qRyeeB_hpHePrV-db2UQtecd5Wwi7k</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Medeiros, Patricia M.</creator><creator>Seidel, Michael</creator><creator>Niggemann, Jutta</creator><creator>Spencer, Robert G. M.</creator><creator>Hernes, Peter J.</creator><creator>Yager, Patricia L.</creator><creator>Miller, William L.</creator><creator>Dittmar, Thorsten</creator><creator>Hansell, Dennis A.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7UA</scope><orcidid>https://orcid.org/0000-0003-1237-9233</orcidid></search><sort><creationdate>201605</creationdate><title>A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean</title><author>Medeiros, Patricia M. ; Seidel, Michael ; Niggemann, Jutta ; Spencer, Robert G. M. ; Hernes, Peter J. ; Yager, Patricia L. ; Miller, William L. ; Dittmar, Thorsten ; Hansell, Dennis A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4711-754ba344778ba5aea48f7591d7b37f23f180de9edcb10663c21e10afca5f93f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atlantic Meridional Overturning Circulation (AMOC)</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Circulation</topic><topic>Composition</topic><topic>Correlation</topic><topic>Cycles</topic><topic>Cyclotron resonance</topic><topic>deep North Atlantic Ocean</topic><topic>deep North Pacific Ocean</topic><topic>Dissolved organic matter</topic><topic>Distribution</topic><topic>Earth</topic><topic>Enrichment</topic><topic>Equatorial regions</topic><topic>Formulae</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Freshwater</topic><topic>FT‐ICR MS</topic><topic>Identification</topic><topic>Indicators</topic><topic>Injection</topic><topic>Lakes</topic><topic>Landscape</topic><topic>Marine</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>meridional overturning circulation</topic><topic>Ocean circulation</topic><topic>Oceans</topic><topic>Organic carbon</topic><topic>Pools</topic><topic>Resonance</topic><topic>Rivers</topic><topic>Spectrometry</topic><topic>Storage</topic><topic>terrigenous DOM</topic><topic>Tracers</topic><topic>Tracking</topic><topic>Vegetation</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medeiros, Patricia M.</creatorcontrib><creatorcontrib>Seidel, Michael</creatorcontrib><creatorcontrib>Niggemann, Jutta</creatorcontrib><creatorcontrib>Spencer, Robert G. M.</creatorcontrib><creatorcontrib>Hernes, Peter J.</creatorcontrib><creatorcontrib>Yager, Patricia L.</creatorcontrib><creatorcontrib>Miller, William L.</creatorcontrib><creatorcontrib>Dittmar, Thorsten</creatorcontrib><creatorcontrib>Hansell, Dennis A.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Water Resources Abstracts</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medeiros, Patricia M.</au><au>Seidel, Michael</au><au>Niggemann, Jutta</au><au>Spencer, Robert G. M.</au><au>Hernes, Peter J.</au><au>Yager, Patricia L.</au><au>Miller, William L.</au><au>Dittmar, Thorsten</au><au>Hansell, Dennis A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean</atitle><jtitle>Global biogeochemical cycles</jtitle><date>2016-05</date><risdate>2016</risdate><volume>30</volume><issue>5</issue><spage>689</spage><epage>699</epage><pages>689-699</pages><issn>0886-6236</issn><eissn>1944-9224</eissn><abstract>Marine dissolved organic matter (DOM) contains one of the largest exchangeable organic carbon pools on Earth. Riverine input represents an important source of DOM to the oceans, yet much remains to be learned about the fate of the DOM linking terrestrial to oceanic carbon cycles through rivers at the global scale. Here we use ultrahigh‐resolution mass spectrometry to identify 184 molecular formulae that are indicators of riverine inputs (referred to as t‐Peaks) and to track their distribution in the deep North Atlantic and North Pacific Oceans. The t‐Peaks were found to be enriched in the Amazon River, to be highly correlated with known tracers of terrigenous input, and to be observed in all samples from four different rivers characterized by vastly different landscapes and vegetation coverage spanning equatorial (Amazon and Congo), subtropical (Altamaha), and Arctic (Kolyma) regions. Their distribution reveals that terrigenous organic matter is injected into the deep ocean by the global meridional overturning circulation, indicating that a fraction of the terrigenous DOM introduced by rivers contributes to the DOM pool observed in the deep ocean and to the storage of terrigenous organic carbon. This novel molecular approach can be used to further constrain the transfer of DOM from land to sea, especially considering that Fourier transform ion cyclotron resonance mass spectrometer analysis is becoming increasingly frequent in studies characterizing the molecular composition of DOM in lakes, rivers, and the ocean. Key Points 184 molecular formulae indicative of riverine inputs (t‐Peaks) have been identified t‐Peaks are correlated with tracers of terrigenous input and observed in multiple rivers worldwide t‐Peaks revealed injection of terrigenous DOM into deep ocean by meridional overturning circulation</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GB005320</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1237-9233</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0886-6236
ispartof Global biogeochemical cycles, 2016-05, Vol.30 (5), p.689-699
issn 0886-6236
1944-9224
language eng
recordid cdi_proquest_miscellaneous_1808710954
source Wiley; Wiley-Blackwell AGU Digital Library
subjects Atlantic Meridional Overturning Circulation (AMOC)
Carbon
Carbon cycle
Circulation
Composition
Correlation
Cycles
Cyclotron resonance
deep North Atlantic Ocean
deep North Pacific Ocean
Dissolved organic matter
Distribution
Earth
Enrichment
Equatorial regions
Formulae
Fourier analysis
Fourier transforms
Freshwater
FT‐ICR MS
Identification
Indicators
Injection
Lakes
Landscape
Marine
Mass spectrometry
Mass spectroscopy
meridional overturning circulation
Ocean circulation
Oceans
Organic carbon
Pools
Resonance
Rivers
Spectrometry
Storage
terrigenous DOM
Tracers
Tracking
Vegetation
Water analysis
title A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20molecular%20approach%20for%20tracing%20terrigenous%20dissolved%20organic%20matter%20into%20the%20deep%20ocean&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Medeiros,%20Patricia%20M.&rft.date=2016-05&rft.volume=30&rft.issue=5&rft.spage=689&rft.epage=699&rft.pages=689-699&rft.issn=0886-6236&rft.eissn=1944-9224&rft_id=info:doi/10.1002/2015GB005320&rft_dat=%3Cproquest_cross%3E4087156451%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4711-754ba344778ba5aea48f7591d7b37f23f180de9edcb10663c21e10afca5f93f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1795961837&rft_id=info:pmid/&rfr_iscdi=true