Loading…

Evidence of component merging equatorward of the cusp

The Polar spacecraft passed through a region near the dayside magnetopause on May 29, 1996, at a geocentric distance of approx. 8 R (sub E) and high, northern magnetic latitudes. The interplanetary magnetic field (IMF) was northward during the pass. Data from the Thermal Ion Dynamics Experiment reve...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research 1999-10, Vol.104 (A10), p.22623-22633
Main Authors: Chandler, M. O., Fuselier, S. A., Lockwood, M., Moore, T. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Polar spacecraft passed through a region near the dayside magnetopause on May 29, 1996, at a geocentric distance of approx. 8 R (sub E) and high, northern magnetic latitudes. The interplanetary magnetic field (IMF) was northward during the pass. Data from the Thermal Ion Dynamics Experiment revealed the existence of low-speed (approx. 50 km s (exp-1)) ion D-shaped distributions mixed with cold ions (approx. 2 eV) over a period of 2.5 hours. These ions were traveling parallel to the magnetic field toward the Northern Hemisphere ionosphere and were convecting primarily eastward. The D-shaped distributions are distinct from a convecting Maxwellian and, along with the magnetic field direction, are taken as evidence that the spacecraft was inside the magnetosphere and not in the magnetosheath. Furthermore, the absence of ions in the antiparallel direction is taken as evidence that low-shear merging was occurring at a location southward of the spacecraft and equatorward of the Southern Hemisphere cusp. The cold ions were of ionospheric origin, with initially slow field-aligned speeds, which were accelerated upon reflection from the magnetopause. These observations provide significant new evidence consistent with component magnetic merging sites equatorward of the cusp for northward IMF.
ISSN:0148-0227
2156-2202
DOI:10.1029/1999JA900175