Loading…
Magnesium treatment palliates noise-induced behavioral deficits by normalizing DAergic and 5-HTergic metabolism in adult male rats
Magnesium (Mg) is the fourth most abundant biological mineral essential for good health. Neuroprotective, anxiolytic and antidepressant effects of magnesium following stress and brain injuries are well established. In present study, we analyzed the protective effects of magnesium in rats exposed to...
Saved in:
Published in: | Metabolic brain disease 2016-08, Vol.31 (4), p.815-825 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magnesium (Mg) is the fourth most abundant biological mineral essential for good health. Neuroprotective, anxiolytic and antidepressant effects of magnesium following stress and brain injuries are well established. In present study, we analyzed the protective effects of magnesium in rats exposed to sub-chronic noise stress. Magnesium Chloride (MgCl
2
, 100 mg/kg) was administered intraperitoneally once daily for 15 days prior exposure to noise stress. Rats were exposed to noise stress for 4 h after administration of magnesium for 15 days. At the end of treatment behavioral alterations were assessed. Animals were decapitated following behavioral testing and the brains were dissected out for neurochemical estimations by HPLC-EC. Improvement in noise-induced memory deficits as assessed by novel object recognition (NOR) test and elevated plus maze (EPM) test was found in magnesium treated rats. This improvement in noise-induced behavioral deficits following treatment with magnesium may be attributed to a significant decrease (
p
|
---|---|
ISSN: | 0885-7490 1573-7365 |
DOI: | 10.1007/s11011-016-9811-4 |