Loading…

Thermal Parameters and Microstructural Development in Directionally Solidified Zn-Rich Zn-Mg Alloys

Transient directional solidification experiments have been carried out with Zn-Mg hypoeutectic alloys under an extensive range of cooling rates with a view to analyzing the evolution of microstructure. It is shown that the microstructure is formed by a Zn-rich matrix of different morphologies and co...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2016-06, Vol.47 (6), p.3052-3064
Main Authors: Vida, Talita A., Freitas, Emmanuelle S., Brito, Crystopher, Cheung, Noé, Arenas, Maria A., Conde, Ana, De Damborenea, Juan, Garcia, Amauri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-8fe5da6a99ae6653c69ac678e5de7f7e11a52b3012e722d736d3948b0ac23d9e3
cites cdi_FETCH-LOGICAL-c349t-8fe5da6a99ae6653c69ac678e5de7f7e11a52b3012e722d736d3948b0ac23d9e3
container_end_page 3064
container_issue 6
container_start_page 3052
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 47
creator Vida, Talita A.
Freitas, Emmanuelle S.
Brito, Crystopher
Cheung, Noé
Arenas, Maria A.
Conde, Ana
De Damborenea, Juan
Garcia, Amauri
description Transient directional solidification experiments have been carried out with Zn-Mg hypoeutectic alloys under an extensive range of cooling rates with a view to analyzing the evolution of microstructure. It is shown that the microstructure is formed by a Zn-rich matrix of different morphologies and competitive eutectic mixtures (Zn-Zn 11 Mg 2 and Zn-Zn 2 Mg). For 0.3 wt-pct Mg and 0.5 wt-pct Mg alloys, the Zn-rich matrix is shown to be characterized by high-cooling rates plate-like cells (cooling rates >9.5 and 24 K/s, respectively), followed by a granular–dendritic morphological transition for lower cooling rates. In contrast, a directionally solidified Zn1.2 wt-pct Mg alloy casting is shown to have the Zn-rich matrix formed only by dendritic equiaxed grains. Experimental growth laws are proposed relating the plate-like cellular interphase, the secondary dendritic arm spacing, and the eutectic interphase spacings to solidification thermal parameters, i.e ., cooling rate and growth rate. The experimental law for the growth of secondary dendritic spacings under unsteady-state solidifications is also shown to encompass results of hypoeutectic Zn-Mg alloys subjected to steady-state Bridgman growth.
doi_str_mv 10.1007/s11661-016-3494-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1809626607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1809626607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-8fe5da6a99ae6653c69ac678e5de7f7e11a52b3012e722d736d3948b0ac23d9e3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd_gLeCFy_RpGmT5jg2f8GGovPiJWTp65aRtjNphf33psyDCJ7e4-Xzvrx8ELqk5IYSIm4DpZxTTCjHLJMZFkdoRPOMYSozchx7IhjOecpO0VkIW0IIlYyPkFluwNfaJS_a6xo68CHRTZksrPFt6Hxvut7H5xl8gWt3NTRdYptkZj2YzraNdm6fvLXOlrayUCYfDX61ZjPUxTqZONfuwzk6qbQLcPFTx-j9_m45fcTz54en6WSOTTy5w0UFeam5llID5zkzXGrDRRGnICoBlOo8XTFCUxBpWgrGSyazYkW0SVkpgY3R9SF359vPHkKnahsMOKcbaPugaEEkTzmPKsbo6g-6bXsffxMpUeRZzvOCRIoeqMFF8FCpnbe19ntFiRq0q4N2FbWrQbsaktPDTohsswb_K_nfpW8xE4Vk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785456580</pqid></control><display><type>article</type><title>Thermal Parameters and Microstructural Development in Directionally Solidified Zn-Rich Zn-Mg Alloys</title><source>Springer Link</source><creator>Vida, Talita A. ; Freitas, Emmanuelle S. ; Brito, Crystopher ; Cheung, Noé ; Arenas, Maria A. ; Conde, Ana ; De Damborenea, Juan ; Garcia, Amauri</creator><creatorcontrib>Vida, Talita A. ; Freitas, Emmanuelle S. ; Brito, Crystopher ; Cheung, Noé ; Arenas, Maria A. ; Conde, Ana ; De Damborenea, Juan ; Garcia, Amauri</creatorcontrib><description>Transient directional solidification experiments have been carried out with Zn-Mg hypoeutectic alloys under an extensive range of cooling rates with a view to analyzing the evolution of microstructure. It is shown that the microstructure is formed by a Zn-rich matrix of different morphologies and competitive eutectic mixtures (Zn-Zn 11 Mg 2 and Zn-Zn 2 Mg). For 0.3 wt-pct Mg and 0.5 wt-pct Mg alloys, the Zn-rich matrix is shown to be characterized by high-cooling rates plate-like cells (cooling rates &gt;9.5 and 24 K/s, respectively), followed by a granular–dendritic morphological transition for lower cooling rates. In contrast, a directionally solidified Zn1.2 wt-pct Mg alloy casting is shown to have the Zn-rich matrix formed only by dendritic equiaxed grains. Experimental growth laws are proposed relating the plate-like cellular interphase, the secondary dendritic arm spacing, and the eutectic interphase spacings to solidification thermal parameters, i.e ., cooling rate and growth rate. The experimental law for the growth of secondary dendritic spacings under unsteady-state solidifications is also shown to encompass results of hypoeutectic Zn-Mg alloys subjected to steady-state Bridgman growth.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-016-3494-7</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloy solidification ; Alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cooling rate ; Directional solidification ; Magnesium base alloys ; Materials Science ; Metallic Materials ; Metallurgy ; Microstructure ; Nanotechnology ; Structural Materials ; Surfaces and Interfaces ; Thermal properties ; Thermodynamics ; Thin Films ; Zinc ; Zinc base alloys</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2016-06, Vol.47 (6), p.3052-3064</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-8fe5da6a99ae6653c69ac678e5de7f7e11a52b3012e722d736d3948b0ac23d9e3</citedby><cites>FETCH-LOGICAL-c349t-8fe5da6a99ae6653c69ac678e5de7f7e11a52b3012e722d736d3948b0ac23d9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Vida, Talita A.</creatorcontrib><creatorcontrib>Freitas, Emmanuelle S.</creatorcontrib><creatorcontrib>Brito, Crystopher</creatorcontrib><creatorcontrib>Cheung, Noé</creatorcontrib><creatorcontrib>Arenas, Maria A.</creatorcontrib><creatorcontrib>Conde, Ana</creatorcontrib><creatorcontrib>De Damborenea, Juan</creatorcontrib><creatorcontrib>Garcia, Amauri</creatorcontrib><title>Thermal Parameters and Microstructural Development in Directionally Solidified Zn-Rich Zn-Mg Alloys</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Transient directional solidification experiments have been carried out with Zn-Mg hypoeutectic alloys under an extensive range of cooling rates with a view to analyzing the evolution of microstructure. It is shown that the microstructure is formed by a Zn-rich matrix of different morphologies and competitive eutectic mixtures (Zn-Zn 11 Mg 2 and Zn-Zn 2 Mg). For 0.3 wt-pct Mg and 0.5 wt-pct Mg alloys, the Zn-rich matrix is shown to be characterized by high-cooling rates plate-like cells (cooling rates &gt;9.5 and 24 K/s, respectively), followed by a granular–dendritic morphological transition for lower cooling rates. In contrast, a directionally solidified Zn1.2 wt-pct Mg alloy casting is shown to have the Zn-rich matrix formed only by dendritic equiaxed grains. Experimental growth laws are proposed relating the plate-like cellular interphase, the secondary dendritic arm spacing, and the eutectic interphase spacings to solidification thermal parameters, i.e ., cooling rate and growth rate. The experimental law for the growth of secondary dendritic spacings under unsteady-state solidifications is also shown to encompass results of hypoeutectic Zn-Mg alloys subjected to steady-state Bridgman growth.</description><subject>Alloy solidification</subject><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cooling rate</subject><subject>Directional solidification</subject><subject>Magnesium base alloys</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thermal properties</subject><subject>Thermodynamics</subject><subject>Thin Films</subject><subject>Zinc</subject><subject>Zinc base alloys</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd_gLeCFy_RpGmT5jg2f8GGovPiJWTp65aRtjNphf33psyDCJ7e4-Xzvrx8ELqk5IYSIm4DpZxTTCjHLJMZFkdoRPOMYSozchx7IhjOecpO0VkIW0IIlYyPkFluwNfaJS_a6xo68CHRTZksrPFt6Hxvut7H5xl8gWt3NTRdYptkZj2YzraNdm6fvLXOlrayUCYfDX61ZjPUxTqZONfuwzk6qbQLcPFTx-j9_m45fcTz54en6WSOTTy5w0UFeam5llID5zkzXGrDRRGnICoBlOo8XTFCUxBpWgrGSyazYkW0SVkpgY3R9SF359vPHkKnahsMOKcbaPugaEEkTzmPKsbo6g-6bXsffxMpUeRZzvOCRIoeqMFF8FCpnbe19ntFiRq0q4N2FbWrQbsaktPDTohsswb_K_nfpW8xE4Vk</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Vida, Talita A.</creator><creator>Freitas, Emmanuelle S.</creator><creator>Brito, Crystopher</creator><creator>Cheung, Noé</creator><creator>Arenas, Maria A.</creator><creator>Conde, Ana</creator><creator>De Damborenea, Juan</creator><creator>Garcia, Amauri</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QF</scope></search><sort><creationdate>20160601</creationdate><title>Thermal Parameters and Microstructural Development in Directionally Solidified Zn-Rich Zn-Mg Alloys</title><author>Vida, Talita A. ; Freitas, Emmanuelle S. ; Brito, Crystopher ; Cheung, Noé ; Arenas, Maria A. ; Conde, Ana ; De Damborenea, Juan ; Garcia, Amauri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-8fe5da6a99ae6653c69ac678e5de7f7e11a52b3012e722d736d3948b0ac23d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alloy solidification</topic><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cooling rate</topic><topic>Directional solidification</topic><topic>Magnesium base alloys</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thermal properties</topic><topic>Thermodynamics</topic><topic>Thin Films</topic><topic>Zinc</topic><topic>Zinc base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vida, Talita A.</creatorcontrib><creatorcontrib>Freitas, Emmanuelle S.</creatorcontrib><creatorcontrib>Brito, Crystopher</creatorcontrib><creatorcontrib>Cheung, Noé</creatorcontrib><creatorcontrib>Arenas, Maria A.</creatorcontrib><creatorcontrib>Conde, Ana</creatorcontrib><creatorcontrib>De Damborenea, Juan</creatorcontrib><creatorcontrib>Garcia, Amauri</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vida, Talita A.</au><au>Freitas, Emmanuelle S.</au><au>Brito, Crystopher</au><au>Cheung, Noé</au><au>Arenas, Maria A.</au><au>Conde, Ana</au><au>De Damborenea, Juan</au><au>Garcia, Amauri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Parameters and Microstructural Development in Directionally Solidified Zn-Rich Zn-Mg Alloys</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>47</volume><issue>6</issue><spage>3052</spage><epage>3064</epage><pages>3052-3064</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>Transient directional solidification experiments have been carried out with Zn-Mg hypoeutectic alloys under an extensive range of cooling rates with a view to analyzing the evolution of microstructure. It is shown that the microstructure is formed by a Zn-rich matrix of different morphologies and competitive eutectic mixtures (Zn-Zn 11 Mg 2 and Zn-Zn 2 Mg). For 0.3 wt-pct Mg and 0.5 wt-pct Mg alloys, the Zn-rich matrix is shown to be characterized by high-cooling rates plate-like cells (cooling rates &gt;9.5 and 24 K/s, respectively), followed by a granular–dendritic morphological transition for lower cooling rates. In contrast, a directionally solidified Zn1.2 wt-pct Mg alloy casting is shown to have the Zn-rich matrix formed only by dendritic equiaxed grains. Experimental growth laws are proposed relating the plate-like cellular interphase, the secondary dendritic arm spacing, and the eutectic interphase spacings to solidification thermal parameters, i.e ., cooling rate and growth rate. The experimental law for the growth of secondary dendritic spacings under unsteady-state solidifications is also shown to encompass results of hypoeutectic Zn-Mg alloys subjected to steady-state Bridgman growth.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-016-3494-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2016-06, Vol.47 (6), p.3052-3064
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_1809626607
source Springer Link
subjects Alloy solidification
Alloys
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cooling rate
Directional solidification
Magnesium base alloys
Materials Science
Metallic Materials
Metallurgy
Microstructure
Nanotechnology
Structural Materials
Surfaces and Interfaces
Thermal properties
Thermodynamics
Thin Films
Zinc
Zinc base alloys
title Thermal Parameters and Microstructural Development in Directionally Solidified Zn-Rich Zn-Mg Alloys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Parameters%20and%20Microstructural%20Development%20in%20Directionally%20Solidified%20Zn-Rich%20Zn-Mg%20Alloys&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Vida,%20Talita%20A.&rft.date=2016-06-01&rft.volume=47&rft.issue=6&rft.spage=3052&rft.epage=3064&rft.pages=3052-3064&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-016-3494-7&rft_dat=%3Cproquest_cross%3E1809626607%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-8fe5da6a99ae6653c69ac678e5de7f7e11a52b3012e722d736d3948b0ac23d9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1785456580&rft_id=info:pmid/&rfr_iscdi=true