Loading…
Thermal Parameters and Microstructural Development in Directionally Solidified Zn-Rich Zn-Mg Alloys
Transient directional solidification experiments have been carried out with Zn-Mg hypoeutectic alloys under an extensive range of cooling rates with a view to analyzing the evolution of microstructure. It is shown that the microstructure is formed by a Zn-rich matrix of different morphologies and co...
Saved in:
Published in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2016-06, Vol.47 (6), p.3052-3064 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-8fe5da6a99ae6653c69ac678e5de7f7e11a52b3012e722d736d3948b0ac23d9e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-8fe5da6a99ae6653c69ac678e5de7f7e11a52b3012e722d736d3948b0ac23d9e3 |
container_end_page | 3064 |
container_issue | 6 |
container_start_page | 3052 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 47 |
creator | Vida, Talita A. Freitas, Emmanuelle S. Brito, Crystopher Cheung, Noé Arenas, Maria A. Conde, Ana De Damborenea, Juan Garcia, Amauri |
description | Transient directional solidification experiments have been carried out with Zn-Mg hypoeutectic alloys under an extensive range of cooling rates with a view to analyzing the evolution of microstructure. It is shown that the microstructure is formed by a Zn-rich matrix of different morphologies and competitive eutectic mixtures (Zn-Zn
11
Mg
2
and Zn-Zn
2
Mg). For 0.3 wt-pct Mg and 0.5 wt-pct Mg alloys, the Zn-rich matrix is shown to be characterized by high-cooling rates plate-like cells (cooling rates >9.5 and 24 K/s, respectively), followed by a granular–dendritic morphological transition for lower cooling rates. In contrast, a directionally solidified Zn1.2 wt-pct Mg alloy casting is shown to have the Zn-rich matrix formed only by dendritic equiaxed grains. Experimental growth laws are proposed relating the plate-like cellular interphase, the secondary dendritic arm spacing, and the eutectic interphase spacings to solidification thermal parameters,
i.e
., cooling rate and growth rate. The experimental law for the growth of secondary dendritic spacings under unsteady-state solidifications is also shown to encompass results of hypoeutectic Zn-Mg alloys subjected to steady-state Bridgman growth. |
doi_str_mv | 10.1007/s11661-016-3494-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1809626607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1809626607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-8fe5da6a99ae6653c69ac678e5de7f7e11a52b3012e722d736d3948b0ac23d9e3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd_gLeCFy_RpGmT5jg2f8GGovPiJWTp65aRtjNphf33psyDCJ7e4-Xzvrx8ELqk5IYSIm4DpZxTTCjHLJMZFkdoRPOMYSozchx7IhjOecpO0VkIW0IIlYyPkFluwNfaJS_a6xo68CHRTZksrPFt6Hxvut7H5xl8gWt3NTRdYptkZj2YzraNdm6fvLXOlrayUCYfDX61ZjPUxTqZONfuwzk6qbQLcPFTx-j9_m45fcTz54en6WSOTTy5w0UFeam5llID5zkzXGrDRRGnICoBlOo8XTFCUxBpWgrGSyazYkW0SVkpgY3R9SF359vPHkKnahsMOKcbaPugaEEkTzmPKsbo6g-6bXsffxMpUeRZzvOCRIoeqMFF8FCpnbe19ntFiRq0q4N2FbWrQbsaktPDTohsswb_K_nfpW8xE4Vk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785456580</pqid></control><display><type>article</type><title>Thermal Parameters and Microstructural Development in Directionally Solidified Zn-Rich Zn-Mg Alloys</title><source>Springer Link</source><creator>Vida, Talita A. ; Freitas, Emmanuelle S. ; Brito, Crystopher ; Cheung, Noé ; Arenas, Maria A. ; Conde, Ana ; De Damborenea, Juan ; Garcia, Amauri</creator><creatorcontrib>Vida, Talita A. ; Freitas, Emmanuelle S. ; Brito, Crystopher ; Cheung, Noé ; Arenas, Maria A. ; Conde, Ana ; De Damborenea, Juan ; Garcia, Amauri</creatorcontrib><description>Transient directional solidification experiments have been carried out with Zn-Mg hypoeutectic alloys under an extensive range of cooling rates with a view to analyzing the evolution of microstructure. It is shown that the microstructure is formed by a Zn-rich matrix of different morphologies and competitive eutectic mixtures (Zn-Zn
11
Mg
2
and Zn-Zn
2
Mg). For 0.3 wt-pct Mg and 0.5 wt-pct Mg alloys, the Zn-rich matrix is shown to be characterized by high-cooling rates plate-like cells (cooling rates >9.5 and 24 K/s, respectively), followed by a granular–dendritic morphological transition for lower cooling rates. In contrast, a directionally solidified Zn1.2 wt-pct Mg alloy casting is shown to have the Zn-rich matrix formed only by dendritic equiaxed grains. Experimental growth laws are proposed relating the plate-like cellular interphase, the secondary dendritic arm spacing, and the eutectic interphase spacings to solidification thermal parameters,
i.e
., cooling rate and growth rate. The experimental law for the growth of secondary dendritic spacings under unsteady-state solidifications is also shown to encompass results of hypoeutectic Zn-Mg alloys subjected to steady-state Bridgman growth.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-016-3494-7</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloy solidification ; Alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cooling rate ; Directional solidification ; Magnesium base alloys ; Materials Science ; Metallic Materials ; Metallurgy ; Microstructure ; Nanotechnology ; Structural Materials ; Surfaces and Interfaces ; Thermal properties ; Thermodynamics ; Thin Films ; Zinc ; Zinc base alloys</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2016-06, Vol.47 (6), p.3052-3064</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-8fe5da6a99ae6653c69ac678e5de7f7e11a52b3012e722d736d3948b0ac23d9e3</citedby><cites>FETCH-LOGICAL-c349t-8fe5da6a99ae6653c69ac678e5de7f7e11a52b3012e722d736d3948b0ac23d9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Vida, Talita A.</creatorcontrib><creatorcontrib>Freitas, Emmanuelle S.</creatorcontrib><creatorcontrib>Brito, Crystopher</creatorcontrib><creatorcontrib>Cheung, Noé</creatorcontrib><creatorcontrib>Arenas, Maria A.</creatorcontrib><creatorcontrib>Conde, Ana</creatorcontrib><creatorcontrib>De Damborenea, Juan</creatorcontrib><creatorcontrib>Garcia, Amauri</creatorcontrib><title>Thermal Parameters and Microstructural Development in Directionally Solidified Zn-Rich Zn-Mg Alloys</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Transient directional solidification experiments have been carried out with Zn-Mg hypoeutectic alloys under an extensive range of cooling rates with a view to analyzing the evolution of microstructure. It is shown that the microstructure is formed by a Zn-rich matrix of different morphologies and competitive eutectic mixtures (Zn-Zn
11
Mg
2
and Zn-Zn
2
Mg). For 0.3 wt-pct Mg and 0.5 wt-pct Mg alloys, the Zn-rich matrix is shown to be characterized by high-cooling rates plate-like cells (cooling rates >9.5 and 24 K/s, respectively), followed by a granular–dendritic morphological transition for lower cooling rates. In contrast, a directionally solidified Zn1.2 wt-pct Mg alloy casting is shown to have the Zn-rich matrix formed only by dendritic equiaxed grains. Experimental growth laws are proposed relating the plate-like cellular interphase, the secondary dendritic arm spacing, and the eutectic interphase spacings to solidification thermal parameters,
i.e
., cooling rate and growth rate. The experimental law for the growth of secondary dendritic spacings under unsteady-state solidifications is also shown to encompass results of hypoeutectic Zn-Mg alloys subjected to steady-state Bridgman growth.</description><subject>Alloy solidification</subject><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cooling rate</subject><subject>Directional solidification</subject><subject>Magnesium base alloys</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thermal properties</subject><subject>Thermodynamics</subject><subject>Thin Films</subject><subject>Zinc</subject><subject>Zinc base alloys</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd_gLeCFy_RpGmT5jg2f8GGovPiJWTp65aRtjNphf33psyDCJ7e4-Xzvrx8ELqk5IYSIm4DpZxTTCjHLJMZFkdoRPOMYSozchx7IhjOecpO0VkIW0IIlYyPkFluwNfaJS_a6xo68CHRTZksrPFt6Hxvut7H5xl8gWt3NTRdYptkZj2YzraNdm6fvLXOlrayUCYfDX61ZjPUxTqZONfuwzk6qbQLcPFTx-j9_m45fcTz54en6WSOTTy5w0UFeam5llID5zkzXGrDRRGnICoBlOo8XTFCUxBpWgrGSyazYkW0SVkpgY3R9SF359vPHkKnahsMOKcbaPugaEEkTzmPKsbo6g-6bXsffxMpUeRZzvOCRIoeqMFF8FCpnbe19ntFiRq0q4N2FbWrQbsaktPDTohsswb_K_nfpW8xE4Vk</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Vida, Talita A.</creator><creator>Freitas, Emmanuelle S.</creator><creator>Brito, Crystopher</creator><creator>Cheung, Noé</creator><creator>Arenas, Maria A.</creator><creator>Conde, Ana</creator><creator>De Damborenea, Juan</creator><creator>Garcia, Amauri</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QF</scope></search><sort><creationdate>20160601</creationdate><title>Thermal Parameters and Microstructural Development in Directionally Solidified Zn-Rich Zn-Mg Alloys</title><author>Vida, Talita A. ; Freitas, Emmanuelle S. ; Brito, Crystopher ; Cheung, Noé ; Arenas, Maria A. ; Conde, Ana ; De Damborenea, Juan ; Garcia, Amauri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-8fe5da6a99ae6653c69ac678e5de7f7e11a52b3012e722d736d3948b0ac23d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alloy solidification</topic><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cooling rate</topic><topic>Directional solidification</topic><topic>Magnesium base alloys</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thermal properties</topic><topic>Thermodynamics</topic><topic>Thin Films</topic><topic>Zinc</topic><topic>Zinc base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vida, Talita A.</creatorcontrib><creatorcontrib>Freitas, Emmanuelle S.</creatorcontrib><creatorcontrib>Brito, Crystopher</creatorcontrib><creatorcontrib>Cheung, Noé</creatorcontrib><creatorcontrib>Arenas, Maria A.</creatorcontrib><creatorcontrib>Conde, Ana</creatorcontrib><creatorcontrib>De Damborenea, Juan</creatorcontrib><creatorcontrib>Garcia, Amauri</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vida, Talita A.</au><au>Freitas, Emmanuelle S.</au><au>Brito, Crystopher</au><au>Cheung, Noé</au><au>Arenas, Maria A.</au><au>Conde, Ana</au><au>De Damborenea, Juan</au><au>Garcia, Amauri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Parameters and Microstructural Development in Directionally Solidified Zn-Rich Zn-Mg Alloys</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>47</volume><issue>6</issue><spage>3052</spage><epage>3064</epage><pages>3052-3064</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>Transient directional solidification experiments have been carried out with Zn-Mg hypoeutectic alloys under an extensive range of cooling rates with a view to analyzing the evolution of microstructure. It is shown that the microstructure is formed by a Zn-rich matrix of different morphologies and competitive eutectic mixtures (Zn-Zn
11
Mg
2
and Zn-Zn
2
Mg). For 0.3 wt-pct Mg and 0.5 wt-pct Mg alloys, the Zn-rich matrix is shown to be characterized by high-cooling rates plate-like cells (cooling rates >9.5 and 24 K/s, respectively), followed by a granular–dendritic morphological transition for lower cooling rates. In contrast, a directionally solidified Zn1.2 wt-pct Mg alloy casting is shown to have the Zn-rich matrix formed only by dendritic equiaxed grains. Experimental growth laws are proposed relating the plate-like cellular interphase, the secondary dendritic arm spacing, and the eutectic interphase spacings to solidification thermal parameters,
i.e
., cooling rate and growth rate. The experimental law for the growth of secondary dendritic spacings under unsteady-state solidifications is also shown to encompass results of hypoeutectic Zn-Mg alloys subjected to steady-state Bridgman growth.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-016-3494-7</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2016-06, Vol.47 (6), p.3052-3064 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_miscellaneous_1809626607 |
source | Springer Link |
subjects | Alloy solidification Alloys Characterization and Evaluation of Materials Chemistry and Materials Science Cooling rate Directional solidification Magnesium base alloys Materials Science Metallic Materials Metallurgy Microstructure Nanotechnology Structural Materials Surfaces and Interfaces Thermal properties Thermodynamics Thin Films Zinc Zinc base alloys |
title | Thermal Parameters and Microstructural Development in Directionally Solidified Zn-Rich Zn-Mg Alloys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Parameters%20and%20Microstructural%20Development%20in%20Directionally%20Solidified%20Zn-Rich%20Zn-Mg%20Alloys&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Vida,%20Talita%20A.&rft.date=2016-06-01&rft.volume=47&rft.issue=6&rft.spage=3052&rft.epage=3064&rft.pages=3052-3064&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-016-3494-7&rft_dat=%3Cproquest_cross%3E1809626607%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-8fe5da6a99ae6653c69ac678e5de7f7e11a52b3012e722d736d3948b0ac23d9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1785456580&rft_id=info:pmid/&rfr_iscdi=true |