Loading…

Fault detection and diagnosis of bearing based on local wave time-frequency feature analysis

Incipient fault information detection of mechanical equipment is a kind of technical support for efficient operation of current automation equipment. Due to the abruptness and transience of mechanical fault, the traditional signal processing methods based on Fourier transform cannot meet the demands...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiao, Qijun, Luo, Zhonghui, Wu, Junlan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 812
container_issue
container_start_page 808
container_title
container_volume
creator Xiao, Qijun
Luo, Zhonghui
Wu, Junlan
description Incipient fault information detection of mechanical equipment is a kind of technical support for efficient operation of current automation equipment. Due to the abruptness and transience of mechanical fault, the traditional signal processing methods based on Fourier transform cannot meet the demands of such kind of transient signals. In this paper, local wave time-frequency analysis techniques are explored, mainly including Signal Denoising, Signal Singularity Detection, Empirical Mode Decomposition (EMD), and the methods for extracting the features of transient signals are also explored, of which the effectiveness is verified by taking the rolling bearing fault as an example.
doi_str_mv 10.1109/ICNC.2015.7378095
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1809627070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7378095</ieee_id><sourcerecordid>1809627070</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-7c9ce3ee556d78252f86f4f93faf0f7be0693fc087622ff7435f4e1841bf0a7f3</originalsourceid><addsrcrecordid>eNotkE9Lw0AQxVdBsGg_gHjZo5fU_ZPdSY4SrBaKXvQmhE0yU1bSpGY3Sr-9C-1p3sDvPR6PsTspVlKK8nFTvVUrJaRZgYZClOaCLUsoZG7Tb6Ewl2yhpIGsNFZfs2UI30IILQFAlAv2tXZzH3mHEdvox4G7oeOdd7thDD7wkXiDbvLDjjcuYMcT0Y-t6_mf-0Ue_R4zmvBnxqE9ckIX5wlThuuPyX7Lrsj1AZfne8M-188f1Wu2fX_ZVE_bzEulYwZt2aJGNMZ2UCijqLCUU6nJkSBoUNikW1GAVYoIcm0oR1nksiHhgPQNezjlHqYxVQmx3vvQYt-7Acc51DLtYhUIEAm9P6EeEevD5PduOtbn6fQ_e0Rixg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1809627070</pqid></control><display><type>conference_proceeding</type><title>Fault detection and diagnosis of bearing based on local wave time-frequency feature analysis</title><source>IEEE Xplore All Conference Series</source><creator>Xiao, Qijun ; Luo, Zhonghui ; Wu, Junlan</creator><creatorcontrib>Xiao, Qijun ; Luo, Zhonghui ; Wu, Junlan</creatorcontrib><description>Incipient fault information detection of mechanical equipment is a kind of technical support for efficient operation of current automation equipment. Due to the abruptness and transience of mechanical fault, the traditional signal processing methods based on Fourier transform cannot meet the demands of such kind of transient signals. In this paper, local wave time-frequency analysis techniques are explored, mainly including Signal Denoising, Signal Singularity Detection, Empirical Mode Decomposition (EMD), and the methods for extracting the features of transient signals are also explored, of which the effectiveness is verified by taking the rolling bearing fault as an example.</description><identifier>EISSN: 2157-9563</identifier><identifier>EISBN: 9781467376785</identifier><identifier>EISBN: 1467376787</identifier><identifier>EISBN: 9781467376792</identifier><identifier>EISBN: 1467376795</identifier><identifier>DOI: 10.1109/ICNC.2015.7378095</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automation ; Demand ; Fault detection ; Faults ; Feature extraction ; local wave ; Noise reduction ; Roller bearings ; Rolling bearings ; Signal processing ; Time-frequency ; Time-frequency analysis ; Wavelet analysis ; Wavelet transforms</subject><ispartof>2015 11th International Conference on Natural Computation (ICNC), 2015, p.808-812</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7378095$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7378095$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Qijun</creatorcontrib><creatorcontrib>Luo, Zhonghui</creatorcontrib><creatorcontrib>Wu, Junlan</creatorcontrib><title>Fault detection and diagnosis of bearing based on local wave time-frequency feature analysis</title><title>2015 11th International Conference on Natural Computation (ICNC)</title><addtitle>ICNC</addtitle><description>Incipient fault information detection of mechanical equipment is a kind of technical support for efficient operation of current automation equipment. Due to the abruptness and transience of mechanical fault, the traditional signal processing methods based on Fourier transform cannot meet the demands of such kind of transient signals. In this paper, local wave time-frequency analysis techniques are explored, mainly including Signal Denoising, Signal Singularity Detection, Empirical Mode Decomposition (EMD), and the methods for extracting the features of transient signals are also explored, of which the effectiveness is verified by taking the rolling bearing fault as an example.</description><subject>Automation</subject><subject>Demand</subject><subject>Fault detection</subject><subject>Faults</subject><subject>Feature extraction</subject><subject>local wave</subject><subject>Noise reduction</subject><subject>Roller bearings</subject><subject>Rolling bearings</subject><subject>Signal processing</subject><subject>Time-frequency</subject><subject>Time-frequency analysis</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>2157-9563</issn><isbn>9781467376785</isbn><isbn>1467376787</isbn><isbn>9781467376792</isbn><isbn>1467376795</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE9Lw0AQxVdBsGg_gHjZo5fU_ZPdSY4SrBaKXvQmhE0yU1bSpGY3Sr-9C-1p3sDvPR6PsTspVlKK8nFTvVUrJaRZgYZClOaCLUsoZG7Tb6Ewl2yhpIGsNFZfs2UI30IILQFAlAv2tXZzH3mHEdvox4G7oeOdd7thDD7wkXiDbvLDjjcuYMcT0Y-t6_mf-0Ue_R4zmvBnxqE9ckIX5wlThuuPyX7Lrsj1AZfne8M-188f1Wu2fX_ZVE_bzEulYwZt2aJGNMZ2UCijqLCUU6nJkSBoUNikW1GAVYoIcm0oR1nksiHhgPQNezjlHqYxVQmx3vvQYt-7Acc51DLtYhUIEAm9P6EeEevD5PduOtbn6fQ_e0Rixg</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Xiao, Qijun</creator><creator>Luo, Zhonghui</creator><creator>Wu, Junlan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150801</creationdate><title>Fault detection and diagnosis of bearing based on local wave time-frequency feature analysis</title><author>Xiao, Qijun ; Luo, Zhonghui ; Wu, Junlan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-7c9ce3ee556d78252f86f4f93faf0f7be0693fc087622ff7435f4e1841bf0a7f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automation</topic><topic>Demand</topic><topic>Fault detection</topic><topic>Faults</topic><topic>Feature extraction</topic><topic>local wave</topic><topic>Noise reduction</topic><topic>Roller bearings</topic><topic>Rolling bearings</topic><topic>Signal processing</topic><topic>Time-frequency</topic><topic>Time-frequency analysis</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Qijun</creatorcontrib><creatorcontrib>Luo, Zhonghui</creatorcontrib><creatorcontrib>Wu, Junlan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Qijun</au><au>Luo, Zhonghui</au><au>Wu, Junlan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fault detection and diagnosis of bearing based on local wave time-frequency feature analysis</atitle><btitle>2015 11th International Conference on Natural Computation (ICNC)</btitle><stitle>ICNC</stitle><date>2015-08-01</date><risdate>2015</risdate><spage>808</spage><epage>812</epage><pages>808-812</pages><eissn>2157-9563</eissn><eisbn>9781467376785</eisbn><eisbn>1467376787</eisbn><eisbn>9781467376792</eisbn><eisbn>1467376795</eisbn><abstract>Incipient fault information detection of mechanical equipment is a kind of technical support for efficient operation of current automation equipment. Due to the abruptness and transience of mechanical fault, the traditional signal processing methods based on Fourier transform cannot meet the demands of such kind of transient signals. In this paper, local wave time-frequency analysis techniques are explored, mainly including Signal Denoising, Signal Singularity Detection, Empirical Mode Decomposition (EMD), and the methods for extracting the features of transient signals are also explored, of which the effectiveness is verified by taking the rolling bearing fault as an example.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2015.7378095</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2157-9563
ispartof 2015 11th International Conference on Natural Computation (ICNC), 2015, p.808-812
issn 2157-9563
language eng
recordid cdi_proquest_miscellaneous_1809627070
source IEEE Xplore All Conference Series
subjects Automation
Demand
Fault detection
Faults
Feature extraction
local wave
Noise reduction
Roller bearings
Rolling bearings
Signal processing
Time-frequency
Time-frequency analysis
Wavelet analysis
Wavelet transforms
title Fault detection and diagnosis of bearing based on local wave time-frequency feature analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fault%20detection%20and%20diagnosis%20of%20bearing%20based%20on%20local%20wave%20time-frequency%20feature%20analysis&rft.btitle=2015%2011th%20International%20Conference%20on%20Natural%20Computation%20(ICNC)&rft.au=Xiao,%20Qijun&rft.date=2015-08-01&rft.spage=808&rft.epage=812&rft.pages=808-812&rft.eissn=2157-9563&rft_id=info:doi/10.1109/ICNC.2015.7378095&rft.eisbn=9781467376785&rft.eisbn_list=1467376787&rft.eisbn_list=9781467376792&rft.eisbn_list=1467376795&rft_dat=%3Cproquest_CHZPO%3E1809627070%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i123t-7c9ce3ee556d78252f86f4f93faf0f7be0693fc087622ff7435f4e1841bf0a7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1809627070&rft_id=info:pmid/&rft_ieee_id=7378095&rfr_iscdi=true