Loading…
Fault detection and diagnosis of bearing based on local wave time-frequency feature analysis
Incipient fault information detection of mechanical equipment is a kind of technical support for efficient operation of current automation equipment. Due to the abruptness and transience of mechanical fault, the traditional signal processing methods based on Fourier transform cannot meet the demands...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 812 |
container_issue | |
container_start_page | 808 |
container_title | |
container_volume | |
creator | Xiao, Qijun Luo, Zhonghui Wu, Junlan |
description | Incipient fault information detection of mechanical equipment is a kind of technical support for efficient operation of current automation equipment. Due to the abruptness and transience of mechanical fault, the traditional signal processing methods based on Fourier transform cannot meet the demands of such kind of transient signals. In this paper, local wave time-frequency analysis techniques are explored, mainly including Signal Denoising, Signal Singularity Detection, Empirical Mode Decomposition (EMD), and the methods for extracting the features of transient signals are also explored, of which the effectiveness is verified by taking the rolling bearing fault as an example. |
doi_str_mv | 10.1109/ICNC.2015.7378095 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1809627070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7378095</ieee_id><sourcerecordid>1809627070</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-7c9ce3ee556d78252f86f4f93faf0f7be0693fc087622ff7435f4e1841bf0a7f3</originalsourceid><addsrcrecordid>eNotkE9Lw0AQxVdBsGg_gHjZo5fU_ZPdSY4SrBaKXvQmhE0yU1bSpGY3Sr-9C-1p3sDvPR6PsTspVlKK8nFTvVUrJaRZgYZClOaCLUsoZG7Tb6Ewl2yhpIGsNFZfs2UI30IILQFAlAv2tXZzH3mHEdvox4G7oeOdd7thDD7wkXiDbvLDjjcuYMcT0Y-t6_mf-0Ue_R4zmvBnxqE9ckIX5wlThuuPyX7Lrsj1AZfne8M-188f1Wu2fX_ZVE_bzEulYwZt2aJGNMZ2UCijqLCUU6nJkSBoUNikW1GAVYoIcm0oR1nksiHhgPQNezjlHqYxVQmx3vvQYt-7Acc51DLtYhUIEAm9P6EeEevD5PduOtbn6fQ_e0Rixg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1809627070</pqid></control><display><type>conference_proceeding</type><title>Fault detection and diagnosis of bearing based on local wave time-frequency feature analysis</title><source>IEEE Xplore All Conference Series</source><creator>Xiao, Qijun ; Luo, Zhonghui ; Wu, Junlan</creator><creatorcontrib>Xiao, Qijun ; Luo, Zhonghui ; Wu, Junlan</creatorcontrib><description>Incipient fault information detection of mechanical equipment is a kind of technical support for efficient operation of current automation equipment. Due to the abruptness and transience of mechanical fault, the traditional signal processing methods based on Fourier transform cannot meet the demands of such kind of transient signals. In this paper, local wave time-frequency analysis techniques are explored, mainly including Signal Denoising, Signal Singularity Detection, Empirical Mode Decomposition (EMD), and the methods for extracting the features of transient signals are also explored, of which the effectiveness is verified by taking the rolling bearing fault as an example.</description><identifier>EISSN: 2157-9563</identifier><identifier>EISBN: 9781467376785</identifier><identifier>EISBN: 1467376787</identifier><identifier>EISBN: 9781467376792</identifier><identifier>EISBN: 1467376795</identifier><identifier>DOI: 10.1109/ICNC.2015.7378095</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automation ; Demand ; Fault detection ; Faults ; Feature extraction ; local wave ; Noise reduction ; Roller bearings ; Rolling bearings ; Signal processing ; Time-frequency ; Time-frequency analysis ; Wavelet analysis ; Wavelet transforms</subject><ispartof>2015 11th International Conference on Natural Computation (ICNC), 2015, p.808-812</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7378095$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7378095$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Qijun</creatorcontrib><creatorcontrib>Luo, Zhonghui</creatorcontrib><creatorcontrib>Wu, Junlan</creatorcontrib><title>Fault detection and diagnosis of bearing based on local wave time-frequency feature analysis</title><title>2015 11th International Conference on Natural Computation (ICNC)</title><addtitle>ICNC</addtitle><description>Incipient fault information detection of mechanical equipment is a kind of technical support for efficient operation of current automation equipment. Due to the abruptness and transience of mechanical fault, the traditional signal processing methods based on Fourier transform cannot meet the demands of such kind of transient signals. In this paper, local wave time-frequency analysis techniques are explored, mainly including Signal Denoising, Signal Singularity Detection, Empirical Mode Decomposition (EMD), and the methods for extracting the features of transient signals are also explored, of which the effectiveness is verified by taking the rolling bearing fault as an example.</description><subject>Automation</subject><subject>Demand</subject><subject>Fault detection</subject><subject>Faults</subject><subject>Feature extraction</subject><subject>local wave</subject><subject>Noise reduction</subject><subject>Roller bearings</subject><subject>Rolling bearings</subject><subject>Signal processing</subject><subject>Time-frequency</subject><subject>Time-frequency analysis</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>2157-9563</issn><isbn>9781467376785</isbn><isbn>1467376787</isbn><isbn>9781467376792</isbn><isbn>1467376795</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE9Lw0AQxVdBsGg_gHjZo5fU_ZPdSY4SrBaKXvQmhE0yU1bSpGY3Sr-9C-1p3sDvPR6PsTspVlKK8nFTvVUrJaRZgYZClOaCLUsoZG7Tb6Ewl2yhpIGsNFZfs2UI30IILQFAlAv2tXZzH3mHEdvox4G7oeOdd7thDD7wkXiDbvLDjjcuYMcT0Y-t6_mf-0Ue_R4zmvBnxqE9ckIX5wlThuuPyX7Lrsj1AZfne8M-188f1Wu2fX_ZVE_bzEulYwZt2aJGNMZ2UCijqLCUU6nJkSBoUNikW1GAVYoIcm0oR1nksiHhgPQNezjlHqYxVQmx3vvQYt-7Acc51DLtYhUIEAm9P6EeEevD5PduOtbn6fQ_e0Rixg</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Xiao, Qijun</creator><creator>Luo, Zhonghui</creator><creator>Wu, Junlan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150801</creationdate><title>Fault detection and diagnosis of bearing based on local wave time-frequency feature analysis</title><author>Xiao, Qijun ; Luo, Zhonghui ; Wu, Junlan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-7c9ce3ee556d78252f86f4f93faf0f7be0693fc087622ff7435f4e1841bf0a7f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automation</topic><topic>Demand</topic><topic>Fault detection</topic><topic>Faults</topic><topic>Feature extraction</topic><topic>local wave</topic><topic>Noise reduction</topic><topic>Roller bearings</topic><topic>Rolling bearings</topic><topic>Signal processing</topic><topic>Time-frequency</topic><topic>Time-frequency analysis</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Qijun</creatorcontrib><creatorcontrib>Luo, Zhonghui</creatorcontrib><creatorcontrib>Wu, Junlan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Qijun</au><au>Luo, Zhonghui</au><au>Wu, Junlan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fault detection and diagnosis of bearing based on local wave time-frequency feature analysis</atitle><btitle>2015 11th International Conference on Natural Computation (ICNC)</btitle><stitle>ICNC</stitle><date>2015-08-01</date><risdate>2015</risdate><spage>808</spage><epage>812</epage><pages>808-812</pages><eissn>2157-9563</eissn><eisbn>9781467376785</eisbn><eisbn>1467376787</eisbn><eisbn>9781467376792</eisbn><eisbn>1467376795</eisbn><abstract>Incipient fault information detection of mechanical equipment is a kind of technical support for efficient operation of current automation equipment. Due to the abruptness and transience of mechanical fault, the traditional signal processing methods based on Fourier transform cannot meet the demands of such kind of transient signals. In this paper, local wave time-frequency analysis techniques are explored, mainly including Signal Denoising, Signal Singularity Detection, Empirical Mode Decomposition (EMD), and the methods for extracting the features of transient signals are also explored, of which the effectiveness is verified by taking the rolling bearing fault as an example.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2015.7378095</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2157-9563 |
ispartof | 2015 11th International Conference on Natural Computation (ICNC), 2015, p.808-812 |
issn | 2157-9563 |
language | eng |
recordid | cdi_proquest_miscellaneous_1809627070 |
source | IEEE Xplore All Conference Series |
subjects | Automation Demand Fault detection Faults Feature extraction local wave Noise reduction Roller bearings Rolling bearings Signal processing Time-frequency Time-frequency analysis Wavelet analysis Wavelet transforms |
title | Fault detection and diagnosis of bearing based on local wave time-frequency feature analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fault%20detection%20and%20diagnosis%20of%20bearing%20based%20on%20local%20wave%20time-frequency%20feature%20analysis&rft.btitle=2015%2011th%20International%20Conference%20on%20Natural%20Computation%20(ICNC)&rft.au=Xiao,%20Qijun&rft.date=2015-08-01&rft.spage=808&rft.epage=812&rft.pages=808-812&rft.eissn=2157-9563&rft_id=info:doi/10.1109/ICNC.2015.7378095&rft.eisbn=9781467376785&rft.eisbn_list=1467376787&rft.eisbn_list=9781467376792&rft.eisbn_list=1467376795&rft_dat=%3Cproquest_CHZPO%3E1809627070%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i123t-7c9ce3ee556d78252f86f4f93faf0f7be0693fc087622ff7435f4e1841bf0a7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1809627070&rft_id=info:pmid/&rft_ieee_id=7378095&rfr_iscdi=true |