Loading…
Towards building a predictive model for remote river quality monitoring for mining sites
Most, if not all, mining sites in the Philippines are not equipped with expensive or modern monitoring tools to check for quality of soil, water and air elements which are relevant to ensure safety and wellness of miners. This study focused on the development of low cost mobile electronic sensors to...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Estuar, Maria Regina Justina E. Oppus, Carlos Espiritu, Emilyn Q. Coronel, Andrei D. Enriquez, Erwin Guico, Maria Leonora Claro Monje, Jose |
description | Most, if not all, mining sites in the Philippines are not equipped with expensive or modern monitoring tools to check for quality of soil, water and air elements which are relevant to ensure safety and wellness of miners. This study focused on the development of low cost mobile electronic sensors to monitor quality of water from rivers near mining sites. Low cost electronic sensors connected to a smart phone were developed to capture dissolved oxygen (DO2), pH, Turbidity, Temperature, and Salinity. The data for mercury (Hg) and arsenic (As) were obtained through AAS analyses to form baseline data for the model. Data was collected for over a period of one year, with site visits once every two months. A conditional inference tree (ctree) using recursive binary partitioning was used to generate the prediction model using 70 - 30 split on the training and test data set. The multi-feature model returns Good, Not Good or Unknown based on the scores of each element. The results showed a possible three feature model with significant results for site, salinity and pH balance. |
doi_str_mv | 10.1109/TENCON.2015.7373128 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1809632055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7373128</ieee_id><sourcerecordid>1809632055</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-e7fd0d83729bb3479656966d39a0887a71b82ef21ae9e5c26de87ecf8cea299e3</originalsourceid><addsrcrecordid>eNpNkElrwzAQhdUNGtL8glx07MWpFms7lpAuEJJLCr0Z2RoXFdtKJLul_74OCaVzmWG-N4_HIDSnZEEpMQ-71Wa53SwYoWKhuOKU6Qs0M0rTXBmjZU7FJZowKkzGc0Gu_jNu2PUfy9ktmqX0ScaShBGtJuh9F75tdAmXg2-c7z6wxfsIzle9_wLcBgcNrkPEEdrQA47jNuLDYBvf_4y4832Ix7OjpvXdcUy-h3SHbmrbJJid-xS9Pa12y5dsvX1-XT6uMz8G6DNQtSNOc8VMWfIxtBTSSOm4sURrZRUtNYOaUQsGRMWkA62gqnUFlhkDfIruT777GA4DpL5ofaqgaWwHYUgF1cRIzogQo3R-knoAKPbRtzb-FOeX8l-ErWcd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1809632055</pqid></control><display><type>conference_proceeding</type><title>Towards building a predictive model for remote river quality monitoring for mining sites</title><source>IEEE Xplore All Conference Series</source><creator>Estuar, Maria Regina Justina E. ; Oppus, Carlos ; Espiritu, Emilyn Q. ; Coronel, Andrei D. ; Enriquez, Erwin ; Guico, Maria Leonora ; Claro Monje, Jose</creator><creatorcontrib>Estuar, Maria Regina Justina E. ; Oppus, Carlos ; Espiritu, Emilyn Q. ; Coronel, Andrei D. ; Enriquez, Erwin ; Guico, Maria Leonora ; Claro Monje, Jose</creatorcontrib><description>Most, if not all, mining sites in the Philippines are not equipped with expensive or modern monitoring tools to check for quality of soil, water and air elements which are relevant to ensure safety and wellness of miners. This study focused on the development of low cost mobile electronic sensors to monitor quality of water from rivers near mining sites. Low cost electronic sensors connected to a smart phone were developed to capture dissolved oxygen (DO2), pH, Turbidity, Temperature, and Salinity. The data for mercury (Hg) and arsenic (As) were obtained through AAS analyses to form baseline data for the model. Data was collected for over a period of one year, with site visits once every two months. A conditional inference tree (ctree) using recursive binary partitioning was used to generate the prediction model using 70 - 30 split on the training and test data set. The multi-feature model returns Good, Not Good or Unknown based on the scores of each element. The results showed a possible three feature model with significant results for site, salinity and pH balance.</description><identifier>ISSN: 2159-3442</identifier><identifier>ISBN: 9781479986392</identifier><identifier>ISBN: 1479986399</identifier><identifier>EISSN: 2159-3450</identifier><identifier>EISBN: 9781479986415</identifier><identifier>EISBN: 1479986410</identifier><identifier>DOI: 10.1109/TENCON.2015.7373128</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cities and towns ; Data mining ; Decision trees ; Electronics ; low cost mobile electronic sensors ; machine learning ; Mathematical models ; Mercury (metal) ; Mining ; Monitoring ; Predictive models ; quality monitoring ; Rivers ; Salinity ; Sensors ; Water quality</subject><ispartof>TENCON ... IEEE Region Ten Conference, 2015, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7373128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,27903,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7373128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Estuar, Maria Regina Justina E.</creatorcontrib><creatorcontrib>Oppus, Carlos</creatorcontrib><creatorcontrib>Espiritu, Emilyn Q.</creatorcontrib><creatorcontrib>Coronel, Andrei D.</creatorcontrib><creatorcontrib>Enriquez, Erwin</creatorcontrib><creatorcontrib>Guico, Maria Leonora</creatorcontrib><creatorcontrib>Claro Monje, Jose</creatorcontrib><title>Towards building a predictive model for remote river quality monitoring for mining sites</title><title>TENCON ... IEEE Region Ten Conference</title><addtitle>TENCON</addtitle><description>Most, if not all, mining sites in the Philippines are not equipped with expensive or modern monitoring tools to check for quality of soil, water and air elements which are relevant to ensure safety and wellness of miners. This study focused on the development of low cost mobile electronic sensors to monitor quality of water from rivers near mining sites. Low cost electronic sensors connected to a smart phone were developed to capture dissolved oxygen (DO2), pH, Turbidity, Temperature, and Salinity. The data for mercury (Hg) and arsenic (As) were obtained through AAS analyses to form baseline data for the model. Data was collected for over a period of one year, with site visits once every two months. A conditional inference tree (ctree) using recursive binary partitioning was used to generate the prediction model using 70 - 30 split on the training and test data set. The multi-feature model returns Good, Not Good or Unknown based on the scores of each element. The results showed a possible three feature model with significant results for site, salinity and pH balance.</description><subject>Cities and towns</subject><subject>Data mining</subject><subject>Decision trees</subject><subject>Electronics</subject><subject>low cost mobile electronic sensors</subject><subject>machine learning</subject><subject>Mathematical models</subject><subject>Mercury (metal)</subject><subject>Mining</subject><subject>Monitoring</subject><subject>Predictive models</subject><subject>quality monitoring</subject><subject>Rivers</subject><subject>Salinity</subject><subject>Sensors</subject><subject>Water quality</subject><issn>2159-3442</issn><issn>2159-3450</issn><isbn>9781479986392</isbn><isbn>1479986399</isbn><isbn>9781479986415</isbn><isbn>1479986410</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNkElrwzAQhdUNGtL8glx07MWpFms7lpAuEJJLCr0Z2RoXFdtKJLul_74OCaVzmWG-N4_HIDSnZEEpMQ-71Wa53SwYoWKhuOKU6Qs0M0rTXBmjZU7FJZowKkzGc0Gu_jNu2PUfy9ktmqX0ScaShBGtJuh9F75tdAmXg2-c7z6wxfsIzle9_wLcBgcNrkPEEdrQA47jNuLDYBvf_4y4832Ix7OjpvXdcUy-h3SHbmrbJJid-xS9Pa12y5dsvX1-XT6uMz8G6DNQtSNOc8VMWfIxtBTSSOm4sURrZRUtNYOaUQsGRMWkA62gqnUFlhkDfIruT777GA4DpL5ofaqgaWwHYUgF1cRIzogQo3R-knoAKPbRtzb-FOeX8l-ErWcd</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Estuar, Maria Regina Justina E.</creator><creator>Oppus, Carlos</creator><creator>Espiritu, Emilyn Q.</creator><creator>Coronel, Andrei D.</creator><creator>Enriquez, Erwin</creator><creator>Guico, Maria Leonora</creator><creator>Claro Monje, Jose</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20151101</creationdate><title>Towards building a predictive model for remote river quality monitoring for mining sites</title><author>Estuar, Maria Regina Justina E. ; Oppus, Carlos ; Espiritu, Emilyn Q. ; Coronel, Andrei D. ; Enriquez, Erwin ; Guico, Maria Leonora ; Claro Monje, Jose</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-e7fd0d83729bb3479656966d39a0887a71b82ef21ae9e5c26de87ecf8cea299e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cities and towns</topic><topic>Data mining</topic><topic>Decision trees</topic><topic>Electronics</topic><topic>low cost mobile electronic sensors</topic><topic>machine learning</topic><topic>Mathematical models</topic><topic>Mercury (metal)</topic><topic>Mining</topic><topic>Monitoring</topic><topic>Predictive models</topic><topic>quality monitoring</topic><topic>Rivers</topic><topic>Salinity</topic><topic>Sensors</topic><topic>Water quality</topic><toplevel>online_resources</toplevel><creatorcontrib>Estuar, Maria Regina Justina E.</creatorcontrib><creatorcontrib>Oppus, Carlos</creatorcontrib><creatorcontrib>Espiritu, Emilyn Q.</creatorcontrib><creatorcontrib>Coronel, Andrei D.</creatorcontrib><creatorcontrib>Enriquez, Erwin</creatorcontrib><creatorcontrib>Guico, Maria Leonora</creatorcontrib><creatorcontrib>Claro Monje, Jose</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Estuar, Maria Regina Justina E.</au><au>Oppus, Carlos</au><au>Espiritu, Emilyn Q.</au><au>Coronel, Andrei D.</au><au>Enriquez, Erwin</au><au>Guico, Maria Leonora</au><au>Claro Monje, Jose</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Towards building a predictive model for remote river quality monitoring for mining sites</atitle><btitle>TENCON ... IEEE Region Ten Conference</btitle><stitle>TENCON</stitle><date>2015-11-01</date><risdate>2015</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2159-3442</issn><eissn>2159-3450</eissn><isbn>9781479986392</isbn><isbn>1479986399</isbn><eisbn>9781479986415</eisbn><eisbn>1479986410</eisbn><abstract>Most, if not all, mining sites in the Philippines are not equipped with expensive or modern monitoring tools to check for quality of soil, water and air elements which are relevant to ensure safety and wellness of miners. This study focused on the development of low cost mobile electronic sensors to monitor quality of water from rivers near mining sites. Low cost electronic sensors connected to a smart phone were developed to capture dissolved oxygen (DO2), pH, Turbidity, Temperature, and Salinity. The data for mercury (Hg) and arsenic (As) were obtained through AAS analyses to form baseline data for the model. Data was collected for over a period of one year, with site visits once every two months. A conditional inference tree (ctree) using recursive binary partitioning was used to generate the prediction model using 70 - 30 split on the training and test data set. The multi-feature model returns Good, Not Good or Unknown based on the scores of each element. The results showed a possible three feature model with significant results for site, salinity and pH balance.</abstract><pub>IEEE</pub><doi>10.1109/TENCON.2015.7373128</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2159-3442 |
ispartof | TENCON ... IEEE Region Ten Conference, 2015, p.1-5 |
issn | 2159-3442 2159-3450 |
language | eng |
recordid | cdi_proquest_miscellaneous_1809632055 |
source | IEEE Xplore All Conference Series |
subjects | Cities and towns Data mining Decision trees Electronics low cost mobile electronic sensors machine learning Mathematical models Mercury (metal) Mining Monitoring Predictive models quality monitoring Rivers Salinity Sensors Water quality |
title | Towards building a predictive model for remote river quality monitoring for mining sites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Towards%20building%20a%20predictive%20model%20for%20remote%20river%20quality%20monitoring%20for%20mining%20sites&rft.btitle=TENCON%20...%20IEEE%20Region%20Ten%20Conference&rft.au=Estuar,%20Maria%20Regina%20Justina%20E.&rft.date=2015-11-01&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2159-3442&rft.eissn=2159-3450&rft.isbn=9781479986392&rft.isbn_list=1479986399&rft_id=info:doi/10.1109/TENCON.2015.7373128&rft.eisbn=9781479986415&rft.eisbn_list=1479986410&rft_dat=%3Cproquest_CHZPO%3E1809632055%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-e7fd0d83729bb3479656966d39a0887a71b82ef21ae9e5c26de87ecf8cea299e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1809632055&rft_id=info:pmid/&rft_ieee_id=7373128&rfr_iscdi=true |