Loading…

Towards building a predictive model for remote river quality monitoring for mining sites

Most, if not all, mining sites in the Philippines are not equipped with expensive or modern monitoring tools to check for quality of soil, water and air elements which are relevant to ensure safety and wellness of miners. This study focused on the development of low cost mobile electronic sensors to...

Full description

Saved in:
Bibliographic Details
Main Authors: Estuar, Maria Regina Justina E., Oppus, Carlos, Espiritu, Emilyn Q., Coronel, Andrei D., Enriquez, Erwin, Guico, Maria Leonora, Claro Monje, Jose
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Estuar, Maria Regina Justina E.
Oppus, Carlos
Espiritu, Emilyn Q.
Coronel, Andrei D.
Enriquez, Erwin
Guico, Maria Leonora
Claro Monje, Jose
description Most, if not all, mining sites in the Philippines are not equipped with expensive or modern monitoring tools to check for quality of soil, water and air elements which are relevant to ensure safety and wellness of miners. This study focused on the development of low cost mobile electronic sensors to monitor quality of water from rivers near mining sites. Low cost electronic sensors connected to a smart phone were developed to capture dissolved oxygen (DO2), pH, Turbidity, Temperature, and Salinity. The data for mercury (Hg) and arsenic (As) were obtained through AAS analyses to form baseline data for the model. Data was collected for over a period of one year, with site visits once every two months. A conditional inference tree (ctree) using recursive binary partitioning was used to generate the prediction model using 70 - 30 split on the training and test data set. The multi-feature model returns Good, Not Good or Unknown based on the scores of each element. The results showed a possible three feature model with significant results for site, salinity and pH balance.
doi_str_mv 10.1109/TENCON.2015.7373128
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1809632055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7373128</ieee_id><sourcerecordid>1809632055</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-e7fd0d83729bb3479656966d39a0887a71b82ef21ae9e5c26de87ecf8cea299e3</originalsourceid><addsrcrecordid>eNpNkElrwzAQhdUNGtL8glx07MWpFms7lpAuEJJLCr0Z2RoXFdtKJLul_74OCaVzmWG-N4_HIDSnZEEpMQ-71Wa53SwYoWKhuOKU6Qs0M0rTXBmjZU7FJZowKkzGc0Gu_jNu2PUfy9ktmqX0ScaShBGtJuh9F75tdAmXg2-c7z6wxfsIzle9_wLcBgcNrkPEEdrQA47jNuLDYBvf_4y4832Ix7OjpvXdcUy-h3SHbmrbJJid-xS9Pa12y5dsvX1-XT6uMz8G6DNQtSNOc8VMWfIxtBTSSOm4sURrZRUtNYOaUQsGRMWkA62gqnUFlhkDfIruT777GA4DpL5ofaqgaWwHYUgF1cRIzogQo3R-knoAKPbRtzb-FOeX8l-ErWcd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1809632055</pqid></control><display><type>conference_proceeding</type><title>Towards building a predictive model for remote river quality monitoring for mining sites</title><source>IEEE Xplore All Conference Series</source><creator>Estuar, Maria Regina Justina E. ; Oppus, Carlos ; Espiritu, Emilyn Q. ; Coronel, Andrei D. ; Enriquez, Erwin ; Guico, Maria Leonora ; Claro Monje, Jose</creator><creatorcontrib>Estuar, Maria Regina Justina E. ; Oppus, Carlos ; Espiritu, Emilyn Q. ; Coronel, Andrei D. ; Enriquez, Erwin ; Guico, Maria Leonora ; Claro Monje, Jose</creatorcontrib><description>Most, if not all, mining sites in the Philippines are not equipped with expensive or modern monitoring tools to check for quality of soil, water and air elements which are relevant to ensure safety and wellness of miners. This study focused on the development of low cost mobile electronic sensors to monitor quality of water from rivers near mining sites. Low cost electronic sensors connected to a smart phone were developed to capture dissolved oxygen (DO2), pH, Turbidity, Temperature, and Salinity. The data for mercury (Hg) and arsenic (As) were obtained through AAS analyses to form baseline data for the model. Data was collected for over a period of one year, with site visits once every two months. A conditional inference tree (ctree) using recursive binary partitioning was used to generate the prediction model using 70 - 30 split on the training and test data set. The multi-feature model returns Good, Not Good or Unknown based on the scores of each element. The results showed a possible three feature model with significant results for site, salinity and pH balance.</description><identifier>ISSN: 2159-3442</identifier><identifier>ISBN: 9781479986392</identifier><identifier>ISBN: 1479986399</identifier><identifier>EISSN: 2159-3450</identifier><identifier>EISBN: 9781479986415</identifier><identifier>EISBN: 1479986410</identifier><identifier>DOI: 10.1109/TENCON.2015.7373128</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cities and towns ; Data mining ; Decision trees ; Electronics ; low cost mobile electronic sensors ; machine learning ; Mathematical models ; Mercury (metal) ; Mining ; Monitoring ; Predictive models ; quality monitoring ; Rivers ; Salinity ; Sensors ; Water quality</subject><ispartof>TENCON ... IEEE Region Ten Conference, 2015, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7373128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,27903,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7373128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Estuar, Maria Regina Justina E.</creatorcontrib><creatorcontrib>Oppus, Carlos</creatorcontrib><creatorcontrib>Espiritu, Emilyn Q.</creatorcontrib><creatorcontrib>Coronel, Andrei D.</creatorcontrib><creatorcontrib>Enriquez, Erwin</creatorcontrib><creatorcontrib>Guico, Maria Leonora</creatorcontrib><creatorcontrib>Claro Monje, Jose</creatorcontrib><title>Towards building a predictive model for remote river quality monitoring for mining sites</title><title>TENCON ... IEEE Region Ten Conference</title><addtitle>TENCON</addtitle><description>Most, if not all, mining sites in the Philippines are not equipped with expensive or modern monitoring tools to check for quality of soil, water and air elements which are relevant to ensure safety and wellness of miners. This study focused on the development of low cost mobile electronic sensors to monitor quality of water from rivers near mining sites. Low cost electronic sensors connected to a smart phone were developed to capture dissolved oxygen (DO2), pH, Turbidity, Temperature, and Salinity. The data for mercury (Hg) and arsenic (As) were obtained through AAS analyses to form baseline data for the model. Data was collected for over a period of one year, with site visits once every two months. A conditional inference tree (ctree) using recursive binary partitioning was used to generate the prediction model using 70 - 30 split on the training and test data set. The multi-feature model returns Good, Not Good or Unknown based on the scores of each element. The results showed a possible three feature model with significant results for site, salinity and pH balance.</description><subject>Cities and towns</subject><subject>Data mining</subject><subject>Decision trees</subject><subject>Electronics</subject><subject>low cost mobile electronic sensors</subject><subject>machine learning</subject><subject>Mathematical models</subject><subject>Mercury (metal)</subject><subject>Mining</subject><subject>Monitoring</subject><subject>Predictive models</subject><subject>quality monitoring</subject><subject>Rivers</subject><subject>Salinity</subject><subject>Sensors</subject><subject>Water quality</subject><issn>2159-3442</issn><issn>2159-3450</issn><isbn>9781479986392</isbn><isbn>1479986399</isbn><isbn>9781479986415</isbn><isbn>1479986410</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNkElrwzAQhdUNGtL8glx07MWpFms7lpAuEJJLCr0Z2RoXFdtKJLul_74OCaVzmWG-N4_HIDSnZEEpMQ-71Wa53SwYoWKhuOKU6Qs0M0rTXBmjZU7FJZowKkzGc0Gu_jNu2PUfy9ktmqX0ScaShBGtJuh9F75tdAmXg2-c7z6wxfsIzle9_wLcBgcNrkPEEdrQA47jNuLDYBvf_4y4832Ix7OjpvXdcUy-h3SHbmrbJJid-xS9Pa12y5dsvX1-XT6uMz8G6DNQtSNOc8VMWfIxtBTSSOm4sURrZRUtNYOaUQsGRMWkA62gqnUFlhkDfIruT777GA4DpL5ofaqgaWwHYUgF1cRIzogQo3R-knoAKPbRtzb-FOeX8l-ErWcd</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Estuar, Maria Regina Justina E.</creator><creator>Oppus, Carlos</creator><creator>Espiritu, Emilyn Q.</creator><creator>Coronel, Andrei D.</creator><creator>Enriquez, Erwin</creator><creator>Guico, Maria Leonora</creator><creator>Claro Monje, Jose</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20151101</creationdate><title>Towards building a predictive model for remote river quality monitoring for mining sites</title><author>Estuar, Maria Regina Justina E. ; Oppus, Carlos ; Espiritu, Emilyn Q. ; Coronel, Andrei D. ; Enriquez, Erwin ; Guico, Maria Leonora ; Claro Monje, Jose</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-e7fd0d83729bb3479656966d39a0887a71b82ef21ae9e5c26de87ecf8cea299e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cities and towns</topic><topic>Data mining</topic><topic>Decision trees</topic><topic>Electronics</topic><topic>low cost mobile electronic sensors</topic><topic>machine learning</topic><topic>Mathematical models</topic><topic>Mercury (metal)</topic><topic>Mining</topic><topic>Monitoring</topic><topic>Predictive models</topic><topic>quality monitoring</topic><topic>Rivers</topic><topic>Salinity</topic><topic>Sensors</topic><topic>Water quality</topic><toplevel>online_resources</toplevel><creatorcontrib>Estuar, Maria Regina Justina E.</creatorcontrib><creatorcontrib>Oppus, Carlos</creatorcontrib><creatorcontrib>Espiritu, Emilyn Q.</creatorcontrib><creatorcontrib>Coronel, Andrei D.</creatorcontrib><creatorcontrib>Enriquez, Erwin</creatorcontrib><creatorcontrib>Guico, Maria Leonora</creatorcontrib><creatorcontrib>Claro Monje, Jose</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Estuar, Maria Regina Justina E.</au><au>Oppus, Carlos</au><au>Espiritu, Emilyn Q.</au><au>Coronel, Andrei D.</au><au>Enriquez, Erwin</au><au>Guico, Maria Leonora</au><au>Claro Monje, Jose</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Towards building a predictive model for remote river quality monitoring for mining sites</atitle><btitle>TENCON ... IEEE Region Ten Conference</btitle><stitle>TENCON</stitle><date>2015-11-01</date><risdate>2015</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2159-3442</issn><eissn>2159-3450</eissn><isbn>9781479986392</isbn><isbn>1479986399</isbn><eisbn>9781479986415</eisbn><eisbn>1479986410</eisbn><abstract>Most, if not all, mining sites in the Philippines are not equipped with expensive or modern monitoring tools to check for quality of soil, water and air elements which are relevant to ensure safety and wellness of miners. This study focused on the development of low cost mobile electronic sensors to monitor quality of water from rivers near mining sites. Low cost electronic sensors connected to a smart phone were developed to capture dissolved oxygen (DO2), pH, Turbidity, Temperature, and Salinity. The data for mercury (Hg) and arsenic (As) were obtained through AAS analyses to form baseline data for the model. Data was collected for over a period of one year, with site visits once every two months. A conditional inference tree (ctree) using recursive binary partitioning was used to generate the prediction model using 70 - 30 split on the training and test data set. The multi-feature model returns Good, Not Good or Unknown based on the scores of each element. The results showed a possible three feature model with significant results for site, salinity and pH balance.</abstract><pub>IEEE</pub><doi>10.1109/TENCON.2015.7373128</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2159-3442
ispartof TENCON ... IEEE Region Ten Conference, 2015, p.1-5
issn 2159-3442
2159-3450
language eng
recordid cdi_proquest_miscellaneous_1809632055
source IEEE Xplore All Conference Series
subjects Cities and towns
Data mining
Decision trees
Electronics
low cost mobile electronic sensors
machine learning
Mathematical models
Mercury (metal)
Mining
Monitoring
Predictive models
quality monitoring
Rivers
Salinity
Sensors
Water quality
title Towards building a predictive model for remote river quality monitoring for mining sites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Towards%20building%20a%20predictive%20model%20for%20remote%20river%20quality%20monitoring%20for%20mining%20sites&rft.btitle=TENCON%20...%20IEEE%20Region%20Ten%20Conference&rft.au=Estuar,%20Maria%20Regina%20Justina%20E.&rft.date=2015-11-01&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2159-3442&rft.eissn=2159-3450&rft.isbn=9781479986392&rft.isbn_list=1479986399&rft_id=info:doi/10.1109/TENCON.2015.7373128&rft.eisbn=9781479986415&rft.eisbn_list=1479986410&rft_dat=%3Cproquest_CHZPO%3E1809632055%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-e7fd0d83729bb3479656966d39a0887a71b82ef21ae9e5c26de87ecf8cea299e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1809632055&rft_id=info:pmid/&rft_ieee_id=7373128&rfr_iscdi=true