Loading…

Enhanced Climate Change and Its Detection over the Rocky Mountains

Results from an ensemble of climate change experiments with increasing greenhouse gas and aerosols using the Canadian Centre for Climate Modelling and Analysis Coupled Climate Model are presented with a focus on surface quantities over the Rocky Mountains. There is a marked elevation dependency of t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 1999-01, Vol.12 (1), p.230-243
Main Authors: Fyfe, John C., Flato, Gregory M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Results from an ensemble of climate change experiments with increasing greenhouse gas and aerosols using the Canadian Centre for Climate Modelling and Analysis Coupled Climate Model are presented with a focus on surface quantities over the Rocky Mountains. There is a marked elevation dependency of the simulated surface screen temperature increase over the Rocky Mountains in the winter and spring seasons, with more pronounced changes at higher elevations. The elevation signal is linked to a rise in the snow line in the winter and spring seasons, which amplifies the surface warming via the snow-albedo feedback. Analysis of the winter surface energy budget shows that large changes in the solar component of the radiative input are the direct consequence of surface albedo changes caused by decreasing snow cover. Although the warming signal is enhanced at higher elevations, a two-way analysis of variance reveals that the elevation effect has no potential for early climate change detection. In the early stages of surface warming the elevation effect is masked by relatively large noise, so that the signal-to-noise ratio over the Rocky Mountains is no larger than elsewhere. Only after significant continental-scale warming does the local Rocky Mountain signal begin to dominate the pattern of climate change over western North America (and presumably also the surrounding ecosystems and hydrological networks).
ISSN:0894-8755
1520-0442
DOI:10.1175/1520-0442-12.1.230