Loading…

Methodology for Deriving Deep-Layer Mean Temperatures from Combined Satellite Infrared and Microwave Observations

Deep-layer mean temperatures from Microwave Sounding Unit (MSU) observations have been used by scientists to study trends and interannual variations of tropospheric and lower-stratospheric temperature. The spatial resolution of MSU deep-layer mean temperatures is rather poor for studying trends in l...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 1999-01, Vol.12 (1), p.5-20
Main Authors: Goldberg, Mitchell D., McMillin, Larry M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deep-layer mean temperatures from Microwave Sounding Unit (MSU) observations have been used by scientists to study trends and interannual variations of tropospheric and lower-stratospheric temperature. The spatial resolution of MSU deep-layer mean temperatures is rather poor for studying trends in localized regions. A method is developed in which infrared observations from the High-resolution InfraRed Sounder (HIRS) is used in combination with MSU to derive deep-layer mean temperatures with improved vertical and horizontal resolution. Even though the relationship between infrared radiance and temperature is not linear, the layer associated with the mean temperature is shown to be well defined with a small airmass dependency that is similar to MSU’s airmass dependency. Preliminary validation of HIRS–MSU-derived layer mean temperatures with radiosonde layer mean temperatures show similar precision when compared to MSU-only derived temperatures.
ISSN:0894-8755
1520-0442
DOI:10.1175/1520-0442-12.1.5