Loading…
A Technique to Measure Trends in the Frequency of Discrete Random Events
Time series of extreme meteorological and hydrological events frequently present problems with the use of traditional parametric statistical techniques. These difficulties arise from the frequent use of count data, the presence of zero values, data with nonnormal distributions, and/or truncated data...
Saved in:
Published in: | Journal of climate 1998-05, Vol.11 (5), p.848-855 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 855 |
container_issue | 5 |
container_start_page | 848 |
container_title | Journal of climate |
container_volume | 11 |
creator | Keim, Barry D. Cruise, James F. |
description | Time series of extreme meteorological and hydrological events frequently present problems with the use of traditional parametric statistical techniques. These difficulties arise from the frequent use of count data, the presence of zero values, data with nonnormal distributions, and/or truncated data. This paper presents a parametric method to evaluate temporal trends in extreme events that overcomes these problems. The technique includes the testing of the arrival structure of extreme event data for the Poisson distribution, then prepares and tests time series of interarrival times for trend analysis through linear regression. Nor’easters along the east coast of the United States and heavy rainfall events at Covington, Louisiana, are examined. |
doi_str_mv | 10.1175/1520-0442(1998)011<0848:ATTMTI>2.0.CO;2 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18108135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26242963</jstor_id><sourcerecordid>26242963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-d859a44915053cc454f796d24803c1db25b27006138250d0ceef6365ebeb38273</originalsourceid><addsrcrecordid>eNpFkNtKw0AQhhdRsB4eQdgLEb1InT1moyKUeqhgKUi8XrabCU1pk7qbCn17Eyp6NTD_xz_DR8gtgyFjqbplikMCUvJrlmXmBhh7ACPN3SjPp_nbIx_CcDy75wdk8EcekgGYTCYmVeqYnMS4BGBcAwzIZERz9Iu6-toibRs6RRe3AWkesC4irWraLpC-BOzy2u9oU9KnKvqALdIPVxfNmj5_Y93GM3JUulXE8995Sj5fnvPxJHmfvb6NR--JF1q2SWFU5qTMmAIlvJdKlmmmCy4NCM-KOVdzngJoJgxXUIBHLLXQCuc471apOCVX-95NaLqfYmvX3T-4Wrkam220zDAwTKgOfN2DPjQxBiztJlRrF3aWge1N2t6P7f3Y3qTtTNrepN2btNyCHc8s75ouf0-66N2qDK72Vfyr41wZpXWHXeyxZWyb8B9rLnmmhfgBGx9-jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18108135</pqid></control><display><type>article</type><title>A Technique to Measure Trends in the Frequency of Discrete Random Events</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Keim, Barry D. ; Cruise, James F.</creator><creatorcontrib>Keim, Barry D. ; Cruise, James F.</creatorcontrib><description>Time series of extreme meteorological and hydrological events frequently present problems with the use of traditional parametric statistical techniques. These difficulties arise from the frequent use of count data, the presence of zero values, data with nonnormal distributions, and/or truncated data. This paper presents a parametric method to evaluate temporal trends in extreme events that overcomes these problems. The technique includes the testing of the arrival structure of extreme event data for the Poisson distribution, then prepares and tests time series of interarrival times for trend analysis through linear regression. Nor’easters along the east coast of the United States and heavy rainfall events at Covington, Louisiana, are examined.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/1520-0442(1998)011<0848:ATTMTI>2.0.CO;2</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Cruises ; Datasets ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Floods ; Geophysics. Techniques, methods, instrumentation and models ; Linear regression ; Poisson process ; Rain ; Statistical variance ; Storms ; Time series ; Weather</subject><ispartof>Journal of climate, 1998-05, Vol.11 (5), p.848-855</ispartof><rights>1998 American Meteorological Society</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26242963$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26242963$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,58236,58469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2258566$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Keim, Barry D.</creatorcontrib><creatorcontrib>Cruise, James F.</creatorcontrib><title>A Technique to Measure Trends in the Frequency of Discrete Random Events</title><title>Journal of climate</title><description>Time series of extreme meteorological and hydrological events frequently present problems with the use of traditional parametric statistical techniques. These difficulties arise from the frequent use of count data, the presence of zero values, data with nonnormal distributions, and/or truncated data. This paper presents a parametric method to evaluate temporal trends in extreme events that overcomes these problems. The technique includes the testing of the arrival structure of extreme event data for the Poisson distribution, then prepares and tests time series of interarrival times for trend analysis through linear regression. Nor’easters along the east coast of the United States and heavy rainfall events at Covington, Louisiana, are examined.</description><subject>Cruises</subject><subject>Datasets</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Floods</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Linear regression</subject><subject>Poisson process</subject><subject>Rain</subject><subject>Statistical variance</subject><subject>Storms</subject><subject>Time series</subject><subject>Weather</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpFkNtKw0AQhhdRsB4eQdgLEb1InT1moyKUeqhgKUi8XrabCU1pk7qbCn17Eyp6NTD_xz_DR8gtgyFjqbplikMCUvJrlmXmBhh7ACPN3SjPp_nbIx_CcDy75wdk8EcekgGYTCYmVeqYnMS4BGBcAwzIZERz9Iu6-toibRs6RRe3AWkesC4irWraLpC-BOzy2u9oU9KnKvqALdIPVxfNmj5_Y93GM3JUulXE8995Sj5fnvPxJHmfvb6NR--JF1q2SWFU5qTMmAIlvJdKlmmmCy4NCM-KOVdzngJoJgxXUIBHLLXQCuc471apOCVX-95NaLqfYmvX3T-4Wrkam220zDAwTKgOfN2DPjQxBiztJlRrF3aWge1N2t6P7f3Y3qTtTNrepN2btNyCHc8s75ouf0-66N2qDK72Vfyr41wZpXWHXeyxZWyb8B9rLnmmhfgBGx9-jg</recordid><startdate>19980501</startdate><enddate>19980501</enddate><creator>Keim, Barry D.</creator><creator>Cruise, James F.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19980501</creationdate><title>A Technique to Measure Trends in the Frequency of Discrete Random Events</title><author>Keim, Barry D. ; Cruise, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-d859a44915053cc454f796d24803c1db25b27006138250d0ceef6365ebeb38273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Cruises</topic><topic>Datasets</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Floods</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Linear regression</topic><topic>Poisson process</topic><topic>Rain</topic><topic>Statistical variance</topic><topic>Storms</topic><topic>Time series</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keim, Barry D.</creatorcontrib><creatorcontrib>Cruise, James F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keim, Barry D.</au><au>Cruise, James F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Technique to Measure Trends in the Frequency of Discrete Random Events</atitle><jtitle>Journal of climate</jtitle><date>1998-05-01</date><risdate>1998</risdate><volume>11</volume><issue>5</issue><spage>848</spage><epage>855</epage><pages>848-855</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Time series of extreme meteorological and hydrological events frequently present problems with the use of traditional parametric statistical techniques. These difficulties arise from the frequent use of count data, the presence of zero values, data with nonnormal distributions, and/or truncated data. This paper presents a parametric method to evaluate temporal trends in extreme events that overcomes these problems. The technique includes the testing of the arrival structure of extreme event data for the Poisson distribution, then prepares and tests time series of interarrival times for trend analysis through linear regression. Nor’easters along the east coast of the United States and heavy rainfall events at Covington, Louisiana, are examined.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0442(1998)011<0848:ATTMTI>2.0.CO;2</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 1998-05, Vol.11 (5), p.848-855 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_miscellaneous_18108135 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Cruises Datasets Earth, ocean, space Exact sciences and technology External geophysics Floods Geophysics. Techniques, methods, instrumentation and models Linear regression Poisson process Rain Statistical variance Storms Time series Weather |
title | A Technique to Measure Trends in the Frequency of Discrete Random Events |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Technique%20to%20Measure%20Trends%20in%20the%20Frequency%20of%20Discrete%20Random%20Events&rft.jtitle=Journal%20of%20climate&rft.au=Keim,%20Barry%20D.&rft.date=1998-05-01&rft.volume=11&rft.issue=5&rft.spage=848&rft.epage=855&rft.pages=848-855&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/1520-0442(1998)011%3C0848:ATTMTI%3E2.0.CO;2&rft_dat=%3Cjstor_proqu%3E26242963%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-d859a44915053cc454f796d24803c1db25b27006138250d0ceef6365ebeb38273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18108135&rft_id=info:pmid/&rft_jstor_id=26242963&rfr_iscdi=true |