Loading…

A Technique to Measure Trends in the Frequency of Discrete Random Events

Time series of extreme meteorological and hydrological events frequently present problems with the use of traditional parametric statistical techniques. These difficulties arise from the frequent use of count data, the presence of zero values, data with nonnormal distributions, and/or truncated data...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 1998-05, Vol.11 (5), p.848-855
Main Authors: Keim, Barry D., Cruise, James F.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 855
container_issue 5
container_start_page 848
container_title Journal of climate
container_volume 11
creator Keim, Barry D.
Cruise, James F.
description Time series of extreme meteorological and hydrological events frequently present problems with the use of traditional parametric statistical techniques. These difficulties arise from the frequent use of count data, the presence of zero values, data with nonnormal distributions, and/or truncated data. This paper presents a parametric method to evaluate temporal trends in extreme events that overcomes these problems. The technique includes the testing of the arrival structure of extreme event data for the Poisson distribution, then prepares and tests time series of interarrival times for trend analysis through linear regression. Nor’easters along the east coast of the United States and heavy rainfall events at Covington, Louisiana, are examined.
doi_str_mv 10.1175/1520-0442(1998)011<0848:ATTMTI>2.0.CO;2
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18108135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26242963</jstor_id><sourcerecordid>26242963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-d859a44915053cc454f796d24803c1db25b27006138250d0ceef6365ebeb38273</originalsourceid><addsrcrecordid>eNpFkNtKw0AQhhdRsB4eQdgLEb1InT1moyKUeqhgKUi8XrabCU1pk7qbCn17Eyp6NTD_xz_DR8gtgyFjqbplikMCUvJrlmXmBhh7ACPN3SjPp_nbIx_CcDy75wdk8EcekgGYTCYmVeqYnMS4BGBcAwzIZERz9Iu6-toibRs6RRe3AWkesC4irWraLpC-BOzy2u9oU9KnKvqALdIPVxfNmj5_Y93GM3JUulXE8995Sj5fnvPxJHmfvb6NR--JF1q2SWFU5qTMmAIlvJdKlmmmCy4NCM-KOVdzngJoJgxXUIBHLLXQCuc471apOCVX-95NaLqfYmvX3T-4Wrkam220zDAwTKgOfN2DPjQxBiztJlRrF3aWge1N2t6P7f3Y3qTtTNrepN2btNyCHc8s75ouf0-66N2qDK72Vfyr41wZpXWHXeyxZWyb8B9rLnmmhfgBGx9-jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18108135</pqid></control><display><type>article</type><title>A Technique to Measure Trends in the Frequency of Discrete Random Events</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Keim, Barry D. ; Cruise, James F.</creator><creatorcontrib>Keim, Barry D. ; Cruise, James F.</creatorcontrib><description>Time series of extreme meteorological and hydrological events frequently present problems with the use of traditional parametric statistical techniques. These difficulties arise from the frequent use of count data, the presence of zero values, data with nonnormal distributions, and/or truncated data. This paper presents a parametric method to evaluate temporal trends in extreme events that overcomes these problems. The technique includes the testing of the arrival structure of extreme event data for the Poisson distribution, then prepares and tests time series of interarrival times for trend analysis through linear regression. Nor’easters along the east coast of the United States and heavy rainfall events at Covington, Louisiana, are examined.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/1520-0442(1998)011&lt;0848:ATTMTI&gt;2.0.CO;2</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Cruises ; Datasets ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Floods ; Geophysics. Techniques, methods, instrumentation and models ; Linear regression ; Poisson process ; Rain ; Statistical variance ; Storms ; Time series ; Weather</subject><ispartof>Journal of climate, 1998-05, Vol.11 (5), p.848-855</ispartof><rights>1998 American Meteorological Society</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26242963$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26242963$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,58236,58469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2258566$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Keim, Barry D.</creatorcontrib><creatorcontrib>Cruise, James F.</creatorcontrib><title>A Technique to Measure Trends in the Frequency of Discrete Random Events</title><title>Journal of climate</title><description>Time series of extreme meteorological and hydrological events frequently present problems with the use of traditional parametric statistical techniques. These difficulties arise from the frequent use of count data, the presence of zero values, data with nonnormal distributions, and/or truncated data. This paper presents a parametric method to evaluate temporal trends in extreme events that overcomes these problems. The technique includes the testing of the arrival structure of extreme event data for the Poisson distribution, then prepares and tests time series of interarrival times for trend analysis through linear regression. Nor’easters along the east coast of the United States and heavy rainfall events at Covington, Louisiana, are examined.</description><subject>Cruises</subject><subject>Datasets</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Floods</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Linear regression</subject><subject>Poisson process</subject><subject>Rain</subject><subject>Statistical variance</subject><subject>Storms</subject><subject>Time series</subject><subject>Weather</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpFkNtKw0AQhhdRsB4eQdgLEb1InT1moyKUeqhgKUi8XrabCU1pk7qbCn17Eyp6NTD_xz_DR8gtgyFjqbplikMCUvJrlmXmBhh7ACPN3SjPp_nbIx_CcDy75wdk8EcekgGYTCYmVeqYnMS4BGBcAwzIZERz9Iu6-toibRs6RRe3AWkesC4irWraLpC-BOzy2u9oU9KnKvqALdIPVxfNmj5_Y93GM3JUulXE8995Sj5fnvPxJHmfvb6NR--JF1q2SWFU5qTMmAIlvJdKlmmmCy4NCM-KOVdzngJoJgxXUIBHLLXQCuc471apOCVX-95NaLqfYmvX3T-4Wrkam220zDAwTKgOfN2DPjQxBiztJlRrF3aWge1N2t6P7f3Y3qTtTNrepN2btNyCHc8s75ouf0-66N2qDK72Vfyr41wZpXWHXeyxZWyb8B9rLnmmhfgBGx9-jg</recordid><startdate>19980501</startdate><enddate>19980501</enddate><creator>Keim, Barry D.</creator><creator>Cruise, James F.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19980501</creationdate><title>A Technique to Measure Trends in the Frequency of Discrete Random Events</title><author>Keim, Barry D. ; Cruise, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-d859a44915053cc454f796d24803c1db25b27006138250d0ceef6365ebeb38273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Cruises</topic><topic>Datasets</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Floods</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Linear regression</topic><topic>Poisson process</topic><topic>Rain</topic><topic>Statistical variance</topic><topic>Storms</topic><topic>Time series</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keim, Barry D.</creatorcontrib><creatorcontrib>Cruise, James F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keim, Barry D.</au><au>Cruise, James F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Technique to Measure Trends in the Frequency of Discrete Random Events</atitle><jtitle>Journal of climate</jtitle><date>1998-05-01</date><risdate>1998</risdate><volume>11</volume><issue>5</issue><spage>848</spage><epage>855</epage><pages>848-855</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Time series of extreme meteorological and hydrological events frequently present problems with the use of traditional parametric statistical techniques. These difficulties arise from the frequent use of count data, the presence of zero values, data with nonnormal distributions, and/or truncated data. This paper presents a parametric method to evaluate temporal trends in extreme events that overcomes these problems. The technique includes the testing of the arrival structure of extreme event data for the Poisson distribution, then prepares and tests time series of interarrival times for trend analysis through linear regression. Nor’easters along the east coast of the United States and heavy rainfall events at Covington, Louisiana, are examined.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0442(1998)011&lt;0848:ATTMTI&gt;2.0.CO;2</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 1998-05, Vol.11 (5), p.848-855
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_18108135
source JSTOR Archival Journals and Primary Sources Collection
subjects Cruises
Datasets
Earth, ocean, space
Exact sciences and technology
External geophysics
Floods
Geophysics. Techniques, methods, instrumentation and models
Linear regression
Poisson process
Rain
Statistical variance
Storms
Time series
Weather
title A Technique to Measure Trends in the Frequency of Discrete Random Events
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Technique%20to%20Measure%20Trends%20in%20the%20Frequency%20of%20Discrete%20Random%20Events&rft.jtitle=Journal%20of%20climate&rft.au=Keim,%20Barry%20D.&rft.date=1998-05-01&rft.volume=11&rft.issue=5&rft.spage=848&rft.epage=855&rft.pages=848-855&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/1520-0442(1998)011%3C0848:ATTMTI%3E2.0.CO;2&rft_dat=%3Cjstor_proqu%3E26242963%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-d859a44915053cc454f796d24803c1db25b27006138250d0ceef6365ebeb38273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18108135&rft_id=info:pmid/&rft_jstor_id=26242963&rfr_iscdi=true