Loading…

Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers

Recent progress in the design and realization of optical antennas enclosing fluorescent materials has demonstrated large spontaneous-emission enhancements and, simultaneously, high radiation efficiencies. We discuss here that an important objective of such work is to increase spontaneous-emission ra...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2016-08, Vol.24 (16), p.17916-17927
Main Authors: Tsakmakidis, Kosmas L, Boyd, Robert W, Yablonovitch, Eli, Zhang, Xiang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent progress in the design and realization of optical antennas enclosing fluorescent materials has demonstrated large spontaneous-emission enhancements and, simultaneously, high radiation efficiencies. We discuss here that an important objective of such work is to increase spontaneous-emission rates to such a degree that light-emitting diodes (LEDs) can possess modulation speeds exceeding those of typical semiconductor lasers, which are usually in the range ~20-50 GHz. We outline the underlying physics that enable large spontaneous-emission enhancements in metallic nanostructures, and we then discuss recent theoretical and experimentally promising results, where enhancements larger than a factor of ~300 have been reported, with radiation efficiencies exceeding 50%. We provide key comparative advantages of these structures in comparison to conventional dielectric microcavity designs, namely the fact that the enhancement of spontaneous emission can be relatively nonresonant (i.e., broadband) and that the antenna nanostructures can be spectrally and structurally compatible for integration with a wide class of emitters, including organic dyes, diamond nanocrystals and colloidal quantum dots. Finally, we point out that physical insight into the underlying effects can be gained by analyzing these metallic nanostructures in their equivalent-circuit (or nano-antenna) model, showing that all main effects (including the Purcell factor) can adequately be described in that approach.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.24.017916