Loading…
Ocean surface air temperature derived from multiple data sets and artificial neural networks
This paper presents a new method to derive monthly averaged surface air temperature, Ta, from multiple data sets. Sea Surface Temperature (SST) from the National Centers for Environmental Prediction (NCEP) and total precipitable water (W) from the SSM/I sensor are used as inputs to Artificial Neural...
Saved in:
Published in: | Geophysical research letters 1998-11, Vol.25 (22), p.4217-4220 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4050-26ec18ed4f101a105d7a564dfed40b9b47cab876fd13567fa5bdddcf7413d5313 |
---|---|
cites | cdi_FETCH-LOGICAL-c4050-26ec18ed4f101a105d7a564dfed40b9b47cab876fd13567fa5bdddcf7413d5313 |
container_end_page | 4220 |
container_issue | 22 |
container_start_page | 4217 |
container_title | Geophysical research letters |
container_volume | 25 |
creator | Gautier, Catherine Peterson, Pete Jones, Charles |
description | This paper presents a new method to derive monthly averaged surface air temperature, Ta, from multiple data sets. Sea Surface Temperature (SST) from the National Centers for Environmental Prediction (NCEP) and total precipitable water (W) from the SSM/I sensor are used as inputs to Artificial Neural Networks (ANN). Surface air temperature (Ta) measurements from the Surface Marine Data (SMD) are used to develop and evaluate the methodology. When globally evaluated with SMD data, the bias of the new method is small (0.050°C ± 0.26°C), and the accuracy expressed as root‐mean square (rms) differences has a small global mean (0.73°C ± 0.37°C). These biases and rms differences are smaller than those obtained using NCEP reanalyses and TIROS Operational Vertical Sounder (TOVS) data products. When evaluated with the TOGA‐TAO array measurements over the tropical Pacific, the ANN mean bias and rms differences have similarly small values, 0.37°C and 0.61°C, respectively. |
doi_str_mv | 10.1029/1998GL900086 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18109587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18109587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4050-26ec18ed4f101a105d7a564dfed40b9b47cab876fd13567fa5bdddcf7413d5313</originalsourceid><addsrcrecordid>eNqFkUtvFDEQhC0EEsvCjR_gA-LEgHvGj5kjCmRBWjZSlIgLktVrtyWTeSy2hyT_PhM2Ak5wqlbpqzpUM_YSxFsQdfcOuq7dbDshRKsfsRV0UlatEOYxWwnRLXdt9FP2LOfvC9KIBlbs25kjHHmeU0BHHGPihYYDJSxzIu4pxZ_keUjTwIe5L_HQLy4W5JlK5jh6jqnEEF3Eno80p19Srqd0lZ-zJwH7TC8edM0uTz9enHyqtmebzyfvt5WTQomq1uSgJS8DCEAQyhtUWvqwWGLf7aVxuG-NDh4apU1Atffeu2AkNF410KzZ62PvIU0_ZsrFDjE76nscaZqzhRZEp1rzf9Aoo1t53_jmCLo05Zwo2EOKA6ZbC8Leb23_3nrBXz30YnbYh4Sji_lPRtf1sv2C1UfsOvZ0-89KuznfApjlSWtWHUMxF7r5HcJ0ZbVpjLJfdxv7RXYfTncXYHfNHSsAnM4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17576841</pqid></control><display><type>article</type><title>Ocean surface air temperature derived from multiple data sets and artificial neural networks</title><source>Wiley Online Library AGU Free Content</source><creator>Gautier, Catherine ; Peterson, Pete ; Jones, Charles</creator><creatorcontrib>Gautier, Catherine ; Peterson, Pete ; Jones, Charles</creatorcontrib><description>This paper presents a new method to derive monthly averaged surface air temperature, Ta, from multiple data sets. Sea Surface Temperature (SST) from the National Centers for Environmental Prediction (NCEP) and total precipitable water (W) from the SSM/I sensor are used as inputs to Artificial Neural Networks (ANN). Surface air temperature (Ta) measurements from the Surface Marine Data (SMD) are used to develop and evaluate the methodology. When globally evaluated with SMD data, the bias of the new method is small (0.050°C ± 0.26°C), and the accuracy expressed as root‐mean square (rms) differences has a small global mean (0.73°C ± 0.37°C). These biases and rms differences are smaller than those obtained using NCEP reanalyses and TIROS Operational Vertical Sounder (TOVS) data products. When evaluated with the TOGA‐TAO array measurements over the tropical Pacific, the ANN mean bias and rms differences have similarly small values, 0.37°C and 0.61°C, respectively.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/1998GL900086</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Marine</subject><ispartof>Geophysical research letters, 1998-11, Vol.25 (22), p.4217-4220</ispartof><rights>Copyright 1998 by the American Geophysical Union.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4050-26ec18ed4f101a105d7a564dfed40b9b47cab876fd13567fa5bdddcf7413d5313</citedby><cites>FETCH-LOGICAL-c4050-26ec18ed4f101a105d7a564dfed40b9b47cab876fd13567fa5bdddcf7413d5313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F1998GL900086$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F1998GL900086$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1622827$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gautier, Catherine</creatorcontrib><creatorcontrib>Peterson, Pete</creatorcontrib><creatorcontrib>Jones, Charles</creatorcontrib><title>Ocean surface air temperature derived from multiple data sets and artificial neural networks</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>This paper presents a new method to derive monthly averaged surface air temperature, Ta, from multiple data sets. Sea Surface Temperature (SST) from the National Centers for Environmental Prediction (NCEP) and total precipitable water (W) from the SSM/I sensor are used as inputs to Artificial Neural Networks (ANN). Surface air temperature (Ta) measurements from the Surface Marine Data (SMD) are used to develop and evaluate the methodology. When globally evaluated with SMD data, the bias of the new method is small (0.050°C ± 0.26°C), and the accuracy expressed as root‐mean square (rms) differences has a small global mean (0.73°C ± 0.37°C). These biases and rms differences are smaller than those obtained using NCEP reanalyses and TIROS Operational Vertical Sounder (TOVS) data products. When evaluated with the TOGA‐TAO array measurements over the tropical Pacific, the ANN mean bias and rms differences have similarly small values, 0.37°C and 0.61°C, respectively.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Marine</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkUtvFDEQhC0EEsvCjR_gA-LEgHvGj5kjCmRBWjZSlIgLktVrtyWTeSy2hyT_PhM2Ak5wqlbpqzpUM_YSxFsQdfcOuq7dbDshRKsfsRV0UlatEOYxWwnRLXdt9FP2LOfvC9KIBlbs25kjHHmeU0BHHGPihYYDJSxzIu4pxZ_keUjTwIe5L_HQLy4W5JlK5jh6jqnEEF3Eno80p19Srqd0lZ-zJwH7TC8edM0uTz9enHyqtmebzyfvt5WTQomq1uSgJS8DCEAQyhtUWvqwWGLf7aVxuG-NDh4apU1Atffeu2AkNF410KzZ62PvIU0_ZsrFDjE76nscaZqzhRZEp1rzf9Aoo1t53_jmCLo05Zwo2EOKA6ZbC8Leb23_3nrBXz30YnbYh4Sji_lPRtf1sv2C1UfsOvZ0-89KuznfApjlSWtWHUMxF7r5HcJ0ZbVpjLJfdxv7RXYfTncXYHfNHSsAnM4</recordid><startdate>19981115</startdate><enddate>19981115</enddate><creator>Gautier, Catherine</creator><creator>Peterson, Pete</creator><creator>Jones, Charles</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19981115</creationdate><title>Ocean surface air temperature derived from multiple data sets and artificial neural networks</title><author>Gautier, Catherine ; Peterson, Pete ; Jones, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4050-26ec18ed4f101a105d7a564dfed40b9b47cab876fd13567fa5bdddcf7413d5313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Marine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gautier, Catherine</creatorcontrib><creatorcontrib>Peterson, Pete</creatorcontrib><creatorcontrib>Jones, Charles</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gautier, Catherine</au><au>Peterson, Pete</au><au>Jones, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ocean surface air temperature derived from multiple data sets and artificial neural networks</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>1998-11-15</date><risdate>1998</risdate><volume>25</volume><issue>22</issue><spage>4217</spage><epage>4220</epage><pages>4217-4220</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>This paper presents a new method to derive monthly averaged surface air temperature, Ta, from multiple data sets. Sea Surface Temperature (SST) from the National Centers for Environmental Prediction (NCEP) and total precipitable water (W) from the SSM/I sensor are used as inputs to Artificial Neural Networks (ANN). Surface air temperature (Ta) measurements from the Surface Marine Data (SMD) are used to develop and evaluate the methodology. When globally evaluated with SMD data, the bias of the new method is small (0.050°C ± 0.26°C), and the accuracy expressed as root‐mean square (rms) differences has a small global mean (0.73°C ± 0.37°C). These biases and rms differences are smaller than those obtained using NCEP reanalyses and TIROS Operational Vertical Sounder (TOVS) data products. When evaluated with the TOGA‐TAO array measurements over the tropical Pacific, the ANN mean bias and rms differences have similarly small values, 0.37°C and 0.61°C, respectively.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/1998GL900086</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 1998-11, Vol.25 (22), p.4217-4220 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_18109587 |
source | Wiley Online Library AGU Free Content |
subjects | Earth, ocean, space Exact sciences and technology External geophysics Geophysics. Techniques, methods, instrumentation and models Marine |
title | Ocean surface air temperature derived from multiple data sets and artificial neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ocean%20surface%20air%20temperature%20derived%20from%20multiple%20data%20sets%20and%20artificial%20neural%20networks&rft.jtitle=Geophysical%20research%20letters&rft.au=Gautier,%20Catherine&rft.date=1998-11-15&rft.volume=25&rft.issue=22&rft.spage=4217&rft.epage=4220&rft.pages=4217-4220&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/1998GL900086&rft_dat=%3Cproquest_cross%3E18109587%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4050-26ec18ed4f101a105d7a564dfed40b9b47cab876fd13567fa5bdddcf7413d5313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17576841&rft_id=info:pmid/&rfr_iscdi=true |