Loading…

Ocean surface air temperature derived from multiple data sets and artificial neural networks

This paper presents a new method to derive monthly averaged surface air temperature, Ta, from multiple data sets. Sea Surface Temperature (SST) from the National Centers for Environmental Prediction (NCEP) and total precipitable water (W) from the SSM/I sensor are used as inputs to Artificial Neural...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 1998-11, Vol.25 (22), p.4217-4220
Main Authors: Gautier, Catherine, Peterson, Pete, Jones, Charles
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4050-26ec18ed4f101a105d7a564dfed40b9b47cab876fd13567fa5bdddcf7413d5313
cites cdi_FETCH-LOGICAL-c4050-26ec18ed4f101a105d7a564dfed40b9b47cab876fd13567fa5bdddcf7413d5313
container_end_page 4220
container_issue 22
container_start_page 4217
container_title Geophysical research letters
container_volume 25
creator Gautier, Catherine
Peterson, Pete
Jones, Charles
description This paper presents a new method to derive monthly averaged surface air temperature, Ta, from multiple data sets. Sea Surface Temperature (SST) from the National Centers for Environmental Prediction (NCEP) and total precipitable water (W) from the SSM/I sensor are used as inputs to Artificial Neural Networks (ANN). Surface air temperature (Ta) measurements from the Surface Marine Data (SMD) are used to develop and evaluate the methodology. When globally evaluated with SMD data, the bias of the new method is small (0.050°C ± 0.26°C), and the accuracy expressed as root‐mean square (rms) differences has a small global mean (0.73°C ± 0.37°C). These biases and rms differences are smaller than those obtained using NCEP reanalyses and TIROS Operational Vertical Sounder (TOVS) data products. When evaluated with the TOGA‐TAO array measurements over the tropical Pacific, the ANN mean bias and rms differences have similarly small values, 0.37°C and 0.61°C, respectively.
doi_str_mv 10.1029/1998GL900086
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18109587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18109587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4050-26ec18ed4f101a105d7a564dfed40b9b47cab876fd13567fa5bdddcf7413d5313</originalsourceid><addsrcrecordid>eNqFkUtvFDEQhC0EEsvCjR_gA-LEgHvGj5kjCmRBWjZSlIgLktVrtyWTeSy2hyT_PhM2Ak5wqlbpqzpUM_YSxFsQdfcOuq7dbDshRKsfsRV0UlatEOYxWwnRLXdt9FP2LOfvC9KIBlbs25kjHHmeU0BHHGPihYYDJSxzIu4pxZ_keUjTwIe5L_HQLy4W5JlK5jh6jqnEEF3Eno80p19Srqd0lZ-zJwH7TC8edM0uTz9enHyqtmebzyfvt5WTQomq1uSgJS8DCEAQyhtUWvqwWGLf7aVxuG-NDh4apU1Atffeu2AkNF410KzZ62PvIU0_ZsrFDjE76nscaZqzhRZEp1rzf9Aoo1t53_jmCLo05Zwo2EOKA6ZbC8Leb23_3nrBXz30YnbYh4Sji_lPRtf1sv2C1UfsOvZ0-89KuznfApjlSWtWHUMxF7r5HcJ0ZbVpjLJfdxv7RXYfTncXYHfNHSsAnM4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17576841</pqid></control><display><type>article</type><title>Ocean surface air temperature derived from multiple data sets and artificial neural networks</title><source>Wiley Online Library AGU Free Content</source><creator>Gautier, Catherine ; Peterson, Pete ; Jones, Charles</creator><creatorcontrib>Gautier, Catherine ; Peterson, Pete ; Jones, Charles</creatorcontrib><description>This paper presents a new method to derive monthly averaged surface air temperature, Ta, from multiple data sets. Sea Surface Temperature (SST) from the National Centers for Environmental Prediction (NCEP) and total precipitable water (W) from the SSM/I sensor are used as inputs to Artificial Neural Networks (ANN). Surface air temperature (Ta) measurements from the Surface Marine Data (SMD) are used to develop and evaluate the methodology. When globally evaluated with SMD data, the bias of the new method is small (0.050°C ± 0.26°C), and the accuracy expressed as root‐mean square (rms) differences has a small global mean (0.73°C ± 0.37°C). These biases and rms differences are smaller than those obtained using NCEP reanalyses and TIROS Operational Vertical Sounder (TOVS) data products. When evaluated with the TOGA‐TAO array measurements over the tropical Pacific, the ANN mean bias and rms differences have similarly small values, 0.37°C and 0.61°C, respectively.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/1998GL900086</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Marine</subject><ispartof>Geophysical research letters, 1998-11, Vol.25 (22), p.4217-4220</ispartof><rights>Copyright 1998 by the American Geophysical Union.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4050-26ec18ed4f101a105d7a564dfed40b9b47cab876fd13567fa5bdddcf7413d5313</citedby><cites>FETCH-LOGICAL-c4050-26ec18ed4f101a105d7a564dfed40b9b47cab876fd13567fa5bdddcf7413d5313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F1998GL900086$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F1998GL900086$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1622827$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gautier, Catherine</creatorcontrib><creatorcontrib>Peterson, Pete</creatorcontrib><creatorcontrib>Jones, Charles</creatorcontrib><title>Ocean surface air temperature derived from multiple data sets and artificial neural networks</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>This paper presents a new method to derive monthly averaged surface air temperature, Ta, from multiple data sets. Sea Surface Temperature (SST) from the National Centers for Environmental Prediction (NCEP) and total precipitable water (W) from the SSM/I sensor are used as inputs to Artificial Neural Networks (ANN). Surface air temperature (Ta) measurements from the Surface Marine Data (SMD) are used to develop and evaluate the methodology. When globally evaluated with SMD data, the bias of the new method is small (0.050°C ± 0.26°C), and the accuracy expressed as root‐mean square (rms) differences has a small global mean (0.73°C ± 0.37°C). These biases and rms differences are smaller than those obtained using NCEP reanalyses and TIROS Operational Vertical Sounder (TOVS) data products. When evaluated with the TOGA‐TAO array measurements over the tropical Pacific, the ANN mean bias and rms differences have similarly small values, 0.37°C and 0.61°C, respectively.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Marine</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkUtvFDEQhC0EEsvCjR_gA-LEgHvGj5kjCmRBWjZSlIgLktVrtyWTeSy2hyT_PhM2Ak5wqlbpqzpUM_YSxFsQdfcOuq7dbDshRKsfsRV0UlatEOYxWwnRLXdt9FP2LOfvC9KIBlbs25kjHHmeU0BHHGPihYYDJSxzIu4pxZ_keUjTwIe5L_HQLy4W5JlK5jh6jqnEEF3Eno80p19Srqd0lZ-zJwH7TC8edM0uTz9enHyqtmebzyfvt5WTQomq1uSgJS8DCEAQyhtUWvqwWGLf7aVxuG-NDh4apU1Atffeu2AkNF410KzZ62PvIU0_ZsrFDjE76nscaZqzhRZEp1rzf9Aoo1t53_jmCLo05Zwo2EOKA6ZbC8Leb23_3nrBXz30YnbYh4Sji_lPRtf1sv2C1UfsOvZ0-89KuznfApjlSWtWHUMxF7r5HcJ0ZbVpjLJfdxv7RXYfTncXYHfNHSsAnM4</recordid><startdate>19981115</startdate><enddate>19981115</enddate><creator>Gautier, Catherine</creator><creator>Peterson, Pete</creator><creator>Jones, Charles</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19981115</creationdate><title>Ocean surface air temperature derived from multiple data sets and artificial neural networks</title><author>Gautier, Catherine ; Peterson, Pete ; Jones, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4050-26ec18ed4f101a105d7a564dfed40b9b47cab876fd13567fa5bdddcf7413d5313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Marine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gautier, Catherine</creatorcontrib><creatorcontrib>Peterson, Pete</creatorcontrib><creatorcontrib>Jones, Charles</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gautier, Catherine</au><au>Peterson, Pete</au><au>Jones, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ocean surface air temperature derived from multiple data sets and artificial neural networks</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>1998-11-15</date><risdate>1998</risdate><volume>25</volume><issue>22</issue><spage>4217</spage><epage>4220</epage><pages>4217-4220</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>This paper presents a new method to derive monthly averaged surface air temperature, Ta, from multiple data sets. Sea Surface Temperature (SST) from the National Centers for Environmental Prediction (NCEP) and total precipitable water (W) from the SSM/I sensor are used as inputs to Artificial Neural Networks (ANN). Surface air temperature (Ta) measurements from the Surface Marine Data (SMD) are used to develop and evaluate the methodology. When globally evaluated with SMD data, the bias of the new method is small (0.050°C ± 0.26°C), and the accuracy expressed as root‐mean square (rms) differences has a small global mean (0.73°C ± 0.37°C). These biases and rms differences are smaller than those obtained using NCEP reanalyses and TIROS Operational Vertical Sounder (TOVS) data products. When evaluated with the TOGA‐TAO array measurements over the tropical Pacific, the ANN mean bias and rms differences have similarly small values, 0.37°C and 0.61°C, respectively.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/1998GL900086</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 1998-11, Vol.25 (22), p.4217-4220
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_18109587
source Wiley Online Library AGU Free Content
subjects Earth, ocean, space
Exact sciences and technology
External geophysics
Geophysics. Techniques, methods, instrumentation and models
Marine
title Ocean surface air temperature derived from multiple data sets and artificial neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ocean%20surface%20air%20temperature%20derived%20from%20multiple%20data%20sets%20and%20artificial%20neural%20networks&rft.jtitle=Geophysical%20research%20letters&rft.au=Gautier,%20Catherine&rft.date=1998-11-15&rft.volume=25&rft.issue=22&rft.spage=4217&rft.epage=4220&rft.pages=4217-4220&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/1998GL900086&rft_dat=%3Cproquest_cross%3E18109587%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4050-26ec18ed4f101a105d7a564dfed40b9b47cab876fd13567fa5bdddcf7413d5313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17576841&rft_id=info:pmid/&rfr_iscdi=true