Loading…
A dual-color fluorescent biosensing platform based on WS2 nanosheet for detection of Hg(2+) and Ag(.)
In this work, an effective dual-color fluorescent biosensing platform based on WS2 nanosheets was developed for homogeneous detection of Hg(2+) and Ag(+). This sensing platform was constituted by exploiting the fluorescence quenching ability of WS2 nanosheets and the interactions between WS2 nanoshe...
Saved in:
Published in: | Biosensors & bioelectronics 2016-11, Vol.85, p.464-470 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, an effective dual-color fluorescent biosensing platform based on WS2 nanosheets was developed for homogeneous detection of Hg(2+) and Ag(+). This sensing platform was constituted by exploiting the fluorescence quenching ability of WS2 nanosheets and the interactions between WS2 nanosheets and DNA molecules. In the absence of additional any masking agents, the biosensor could achieve detection of Hg(2+) and Ag(+) in the same solution by monitoring fluorescence intensity changes at 525nm and 583nm, respectively. Hg(2+) and Ag(+) were selectively detected in the concentration range from 6.0-650.0nM and 5.0-1000.0nM, respectively, with the detection limit of 3.3nM and 1.2nM, respectively. It was also demonstrated that the WS2 nanosheet-based sensing platform was suitable for the simultaneous detection of Hg(2+) and Ag(+) in drinking water, serum and cell lysate samples. Moreover, the possible mechanism of fluorescence quenching by WS2 nanosheets was revealed to be related to static quenching, dynamic quenching, and Fo¨rster resonant energy transfer (FRET). This work extended the application of WS2 nanosheets to environmental monitoring and medical diagnosis. |
---|---|
ISSN: | 1873-4235 |
DOI: | 10.1016/j.bios.2016.05.044 |