Loading…

Liver Disease, Systemic Inflammation, and Growth Using a Mixed Parenteral Lipid Emulsion, Containing Soybean Oil, Fish Oil, and Medium Chain Triglycerides, Compared With Soybean Oil in Parenteral Nutrition–Fed Neonatal Piglets

Background: The optimal parenteral lipid emulsion for neonates should reduce the risk of intestinal failure–associated liver disease and inflammation, while supporting growth and development. This could be best achieved by balanced content of ω-6 and ω-3 polyunsaturated fatty acids (PUFAs). Using a...

Full description

Saved in:
Bibliographic Details
Published in:JPEN. Journal of parenteral and enteral nutrition 2016-09, Vol.40 (7), p.973-981
Main Authors: Turner, Justine M., Josephson, Jessica, Field, Catherine J., Wizzard, Pamela R., Ball, Ronald O., Pencharz, Paul B., Wales, Paul W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: The optimal parenteral lipid emulsion for neonates should reduce the risk of intestinal failure–associated liver disease and inflammation, while supporting growth and development. This could be best achieved by balanced content of ω-6 and ω-3 polyunsaturated fatty acids (PUFAs). Using a neonatal piglet model of parenteral nutrition (PN), we compared a 100% soy oil–based emulsion (ω-6:ω-3 PUFA: 7:1) with a mixed lipid emulsion comprising 30% soy oil, 30% medium-chain triglycerides, 25% olive oil, and 15% fish oil (ω-6:ω-3 PUFA: approximately 2.5:1) with regard to liver disease, inflammation, and fatty acid content in plasma and brain. Method: Neonatal piglets, 3–6 days old, underwent jugular catheter insertion for isonitrogenous, isocaloric PN delivery over 14 days. The IL group (n = 8) was treated with Intralipid; the ML group (n = 10) was treated with the mixed lipid (SMOFlipid). Bile flow, liver chemistry, C-reactive protein (CRP), and PUFA content in plasma phospholipids and brain were compared. Results: Compared with the IL group, ML-treated piglets had increased bile flow (P = .008) and lower total bilirubin (P = .001) and CRP (P = .023) concentrations. The ω-6 long-chain PUFA content was lower in plasma and brain for the ML group. The key ω-3 long-chain PUFA for neonatal development, docosahexaenoic acid (DHA), was not different between groups. Conclusion: The mixed lipid, having less ω-6 PUFA and more ω-3 PUFA, was able to prevent liver disease and reduce systemic inflammation in PN-fed neonatal piglets. However, this lipid did not increase plasma or brain DHA status, which would be desirable for neonatal developmental outcomes.
ISSN:0148-6071
1941-2444
DOI:10.1177/0148607115579711