Loading…
Aberrant Subcellular Dynamics of Sigma-1 Receptor Mutants Underlying Neuromuscular Diseases
The sigma-1 receptor (σ-1R) is an endoplasmic reticulum resident chaperone protein involved in a plethora of cellular functions, and whose disruption has been implicated in a wide range of diseases. Genetic analysis has revealed two σ-1R mutants involved in neuromuscular disorders. A point mutation...
Saved in:
Published in: | Molecular pharmacology 2016-09, Vol.90 (3), p.238-253 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The sigma-1 receptor (σ-1R) is an endoplasmic reticulum resident chaperone protein involved in a plethora of cellular functions, and whose disruption has been implicated in a wide range of diseases. Genetic analysis has revealed two σ-1R mutants involved in neuromuscular disorders. A point mutation (E102Q) in the ligand-binding domain results in the juvenile form of amyotrophic lateral sclerosis (ALS16), and a 20 amino-acid deletion (Δ31–50) in the putative cytosolic domain leads to a form of distal hereditary motor neuropathy. We investigated the localization and functional properties of these mutants in cell lines using confocal imaging and electrophysiology. The σ-1R mutants exhibited a significant increase in mobility, aberrant localization, and enhanced block of the inwardly rectifying K+ channel Kir2.1, compared with the wild-type σ-1R. Thus, these σ-1R mutants have different functional properties that could contribute to their disease phenotypes. |
---|---|
ISSN: | 0026-895X 1521-0111 |
DOI: | 10.1124/mol.116.104018 |