Loading…

Spatial and temporal variability of marine-origin matter along a transect from Zhongshan Station to Dome A,Eastern Antarctica

The spatiotemporal distribution pattern of marine-origin matter on the Antarctica ice sheet was used to study variations in the source regions, transport mechanisms and postdepositional influences. We present data on sea salt ions, sulfur components and stable isotopes from surface and snow pit samp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental sciences (China) 2016-08, Vol.46 (8), p.190-202
Main Authors: Li, Chuanjin, Xiao, Cunde, Shi, Guitao, Ding, Minghu, Qin, Dahe, Ren, Jiawen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The spatiotemporal distribution pattern of marine-origin matter on the Antarctica ice sheet was used to study variations in the source regions, transport mechanisms and postdepositional influences. We present data on sea salt ions, sulfur components and stable isotopes from surface and snow pit samples collected along the transect route from Zhongshan Station to Dome A during the austral summer in 2012–2013. A general decreasing trend in the accumulation, sea salt ions and sulfur components occurred with increasing distance from the coast and increasing elevation. However, different sources of the marine components, transport pathways and post-depositional influences were responsible for their different spatial distribution patterns. The marine ions in the coastal snow pit varied seasonally, with higher sea salt ion concentrations in the winter and lower concentrations in the summer; the opposite pattern was found for the sulfur compounds. The sea ice area surrounding Antarctica was the main source region for the deposited sea salt and the open sea water for the sulfur compounds. No significant trends in the marine-origin components were detected during the past 3 decades. Several periods of elevated deposition of sea salt ions were associated with lower temperatures(based on δD and δ18O) or intensified wind fields. In comparison to the sea salt ions, the sulfur concentrations exhibited the opposite distribution patterns and were associated with changes in the surrounding sea ice extent.
ISSN:1001-0742
1878-7320
DOI:10.1016/j.jes.2015.07.011