Loading…

Carbon 13 exchanges between the atmosphere and biosphere

We present a detailed investigation of the gross 12C and 13C exchanges between the atmosphere and biosphere and their influence on the δ13C variations in the atmosphere. The photosynthetic discrimination Δ against 13C is derived from a biophysical model coupled to a general circulation model [Seller...

Full description

Saved in:
Bibliographic Details
Published in:Global biogeochemical cycles 1997-12, Vol.11 (4), p.507-533
Main Authors: Fung, I., Field, C. B., Berry, J. A., Thompson, M. V., Randerson, J. T., Malmström, C. M., Vitousek, P. M., Collatz, G. James, Sellers, P. J., Randall, D. A., Denning, A. S., Badeck, F., John, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a5277-362f622f540886d2798d2479fd7d9383ab0aaef5ee93a3cfabd9435bad93f6bf3
cites cdi_FETCH-LOGICAL-a5277-362f622f540886d2798d2479fd7d9383ab0aaef5ee93a3cfabd9435bad93f6bf3
container_end_page 533
container_issue 4
container_start_page 507
container_title Global biogeochemical cycles
container_volume 11
creator Fung, I.
Field, C. B.
Berry, J. A.
Thompson, M. V.
Randerson, J. T.
Malmström, C. M.
Vitousek, P. M.
Collatz, G. James
Sellers, P. J.
Randall, D. A.
Denning, A. S.
Badeck, F.
John, J.
description We present a detailed investigation of the gross 12C and 13C exchanges between the atmosphere and biosphere and their influence on the δ13C variations in the atmosphere. The photosynthetic discrimination Δ against 13C is derived from a biophysical model coupled to a general circulation model [Sellers et al., 1996a], where stomatal conductance and carbon assimilation are determined simultaneously with the ambient climate. The δ13C of the respired carbon is calculated by a biogeochemical model [Potter et al., 1993; Randerson et al., 1996] as the sum of the contributions from compartments with varying ages. The global flux‐weighted mean photosynthetic discrimination is 12–16‰, which is lower than previous estimates. Factors that lower the discrimination are reduced stomatal conductance and C4 photosynthesis. The decreasing atmospheric δ13C causes an isotopic disequilibrium between the outgoing and incoming fluxes; the disequilibrium is ∼0.33‰ for 1988. The disequilibrium is higher than previous estimates because it accounts for the lifetime of trees and for the ages rather than turnover times of the biospheric pools. The atmospheric δ13C signature resulting from the biospheric fluxes is investigated using a three‐dimensional atmospheric tracer model. The isotopic disequilibrium alone produces a hemispheric difference of ∼0.02‰ in atmospheric δ13C, comparable to the signal from a hypothetical carbon sink of 0.5 Gt C yr−1 into the midlatitude northern hemisphere biosphere. However, the rectifier effect, due to the seasonal covariation of CO2 fluxes and height of the atmospheric boundary layer, yields a background δ13C gradient of the opposite sign. These effects nearly cancel thus favoring a stronger net biospheric uptake than without the background CO2 gradient. Our analysis of the globally averaged carbon budget for the decade of the 1980s indicates that the biospheric uptake of fossil fuel CO2 is likely to be greater than the oceanic uptake; the relative proportions of the sinks cannot be uniquely determined using 12C and 13C alone. The land‐ocean sink partitioning requires, in addition, information about the land use source, isotopic disequilibrium associated with gross oceanic exchanges, as well as the fractions of C3 and C4 vegetation involved in the biospheric uptake.
doi_str_mv 10.1029/97GB01751
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18117572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18117572</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5277-362f622f540886d2798d2479fd7d9383ab0aaef5ee93a3cfabd9435bad93f6bf3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A-yQEgsAn7G8RIqSBEVL_FYWpNkTANpUuxUlL8nqFVZsZoZzZmrO5eQQ0ZPGeXmzOjsgjKt2BYZMCNlbDiX22RA0zSJEy6SXbIXwjulTCplBiQdgc_bJmIiwmUxheYNQ5Rj94XYRN0UI-hmbZhP0fdtU0Z5tZ72yY6DOuDBug7J89Xl02gcT-6y69H5JAbFtY5Fwl3CuVPy10HJtUlLLrVxpS6NSAXkFACdQjQCROEgL40UKod-65LciSE5XunOffu5wNDZWRUKrGtosF0Ey1LWv6t5D56swMK3IXh0du6rGfhvy6j9zcZusunZo7UohAJq56EpqrA54DTVXMoei1fYV1Xj9_96NrsYSar_-Cp0uNzw4D9sooVW9vU2s5Sq-4fxy6O9ET8ANX6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18117572</pqid></control><display><type>article</type><title>Carbon 13 exchanges between the atmosphere and biosphere</title><source>Wiley</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Fung, I. ; Field, C. B. ; Berry, J. A. ; Thompson, M. V. ; Randerson, J. T. ; Malmström, C. M. ; Vitousek, P. M. ; Collatz, G. James ; Sellers, P. J. ; Randall, D. A. ; Denning, A. S. ; Badeck, F. ; John, J.</creator><creatorcontrib>Fung, I. ; Field, C. B. ; Berry, J. A. ; Thompson, M. V. ; Randerson, J. T. ; Malmström, C. M. ; Vitousek, P. M. ; Collatz, G. James ; Sellers, P. J. ; Randall, D. A. ; Denning, A. S. ; Badeck, F. ; John, J.</creatorcontrib><description>We present a detailed investigation of the gross 12C and 13C exchanges between the atmosphere and biosphere and their influence on the δ13C variations in the atmosphere. The photosynthetic discrimination Δ against 13C is derived from a biophysical model coupled to a general circulation model [Sellers et al., 1996a], where stomatal conductance and carbon assimilation are determined simultaneously with the ambient climate. The δ13C of the respired carbon is calculated by a biogeochemical model [Potter et al., 1993; Randerson et al., 1996] as the sum of the contributions from compartments with varying ages. The global flux‐weighted mean photosynthetic discrimination is 12–16‰, which is lower than previous estimates. Factors that lower the discrimination are reduced stomatal conductance and C4 photosynthesis. The decreasing atmospheric δ13C causes an isotopic disequilibrium between the outgoing and incoming fluxes; the disequilibrium is ∼0.33‰ for 1988. The disequilibrium is higher than previous estimates because it accounts for the lifetime of trees and for the ages rather than turnover times of the biospheric pools. The atmospheric δ13C signature resulting from the biospheric fluxes is investigated using a three‐dimensional atmospheric tracer model. The isotopic disequilibrium alone produces a hemispheric difference of ∼0.02‰ in atmospheric δ13C, comparable to the signal from a hypothetical carbon sink of 0.5 Gt C yr−1 into the midlatitude northern hemisphere biosphere. However, the rectifier effect, due to the seasonal covariation of CO2 fluxes and height of the atmospheric boundary layer, yields a background δ13C gradient of the opposite sign. These effects nearly cancel thus favoring a stronger net biospheric uptake than without the background CO2 gradient. Our analysis of the globally averaged carbon budget for the decade of the 1980s indicates that the biospheric uptake of fossil fuel CO2 is likely to be greater than the oceanic uptake; the relative proportions of the sinks cannot be uniquely determined using 12C and 13C alone. The land‐ocean sink partitioning requires, in addition, information about the land use source, isotopic disequilibrium associated with gross oceanic exchanges, as well as the fractions of C3 and C4 vegetation involved in the biospheric uptake.</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>DOI: 10.1029/97GB01751</identifier><identifier>CODEN: GBCYEP</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geochemistry ; Geochemistry: general, methodology, regional studies ; Isotope geochemistry ; Isotope geochemistry. Geochronology</subject><ispartof>Global biogeochemical cycles, 1997-12, Vol.11 (4), p.507-533</ispartof><rights>Copyright 1997 by the American Geophysical Union.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5277-362f622f540886d2798d2479fd7d9383ab0aaef5ee93a3cfabd9435bad93f6bf3</citedby><cites>FETCH-LOGICAL-a5277-362f622f540886d2798d2479fd7d9383ab0aaef5ee93a3cfabd9435bad93f6bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F97GB01751$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F97GB01751$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,11514,23930,23931,25140,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2087244$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fung, I.</creatorcontrib><creatorcontrib>Field, C. B.</creatorcontrib><creatorcontrib>Berry, J. A.</creatorcontrib><creatorcontrib>Thompson, M. V.</creatorcontrib><creatorcontrib>Randerson, J. T.</creatorcontrib><creatorcontrib>Malmström, C. M.</creatorcontrib><creatorcontrib>Vitousek, P. M.</creatorcontrib><creatorcontrib>Collatz, G. James</creatorcontrib><creatorcontrib>Sellers, P. J.</creatorcontrib><creatorcontrib>Randall, D. A.</creatorcontrib><creatorcontrib>Denning, A. S.</creatorcontrib><creatorcontrib>Badeck, F.</creatorcontrib><creatorcontrib>John, J.</creatorcontrib><title>Carbon 13 exchanges between the atmosphere and biosphere</title><title>Global biogeochemical cycles</title><addtitle>Global Biogeochem. Cycles</addtitle><description>We present a detailed investigation of the gross 12C and 13C exchanges between the atmosphere and biosphere and their influence on the δ13C variations in the atmosphere. The photosynthetic discrimination Δ against 13C is derived from a biophysical model coupled to a general circulation model [Sellers et al., 1996a], where stomatal conductance and carbon assimilation are determined simultaneously with the ambient climate. The δ13C of the respired carbon is calculated by a biogeochemical model [Potter et al., 1993; Randerson et al., 1996] as the sum of the contributions from compartments with varying ages. The global flux‐weighted mean photosynthetic discrimination is 12–16‰, which is lower than previous estimates. Factors that lower the discrimination are reduced stomatal conductance and C4 photosynthesis. The decreasing atmospheric δ13C causes an isotopic disequilibrium between the outgoing and incoming fluxes; the disequilibrium is ∼0.33‰ for 1988. The disequilibrium is higher than previous estimates because it accounts for the lifetime of trees and for the ages rather than turnover times of the biospheric pools. The atmospheric δ13C signature resulting from the biospheric fluxes is investigated using a three‐dimensional atmospheric tracer model. The isotopic disequilibrium alone produces a hemispheric difference of ∼0.02‰ in atmospheric δ13C, comparable to the signal from a hypothetical carbon sink of 0.5 Gt C yr−1 into the midlatitude northern hemisphere biosphere. However, the rectifier effect, due to the seasonal covariation of CO2 fluxes and height of the atmospheric boundary layer, yields a background δ13C gradient of the opposite sign. These effects nearly cancel thus favoring a stronger net biospheric uptake than without the background CO2 gradient. Our analysis of the globally averaged carbon budget for the decade of the 1980s indicates that the biospheric uptake of fossil fuel CO2 is likely to be greater than the oceanic uptake; the relative proportions of the sinks cannot be uniquely determined using 12C and 13C alone. The land‐ocean sink partitioning requires, in addition, information about the land use source, isotopic disequilibrium associated with gross oceanic exchanges, as well as the fractions of C3 and C4 vegetation involved in the biospheric uptake.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geochemistry</subject><subject>Geochemistry: general, methodology, regional studies</subject><subject>Isotope geochemistry</subject><subject>Isotope geochemistry. Geochronology</subject><issn>0886-6236</issn><issn>1944-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A-yQEgsAn7G8RIqSBEVL_FYWpNkTANpUuxUlL8nqFVZsZoZzZmrO5eQQ0ZPGeXmzOjsgjKt2BYZMCNlbDiX22RA0zSJEy6SXbIXwjulTCplBiQdgc_bJmIiwmUxheYNQ5Rj94XYRN0UI-hmbZhP0fdtU0Z5tZ72yY6DOuDBug7J89Xl02gcT-6y69H5JAbFtY5Fwl3CuVPy10HJtUlLLrVxpS6NSAXkFACdQjQCROEgL40UKod-65LciSE5XunOffu5wNDZWRUKrGtosF0Ey1LWv6t5D56swMK3IXh0du6rGfhvy6j9zcZusunZo7UohAJq56EpqrA54DTVXMoei1fYV1Xj9_96NrsYSar_-Cp0uNzw4D9sooVW9vU2s5Sq-4fxy6O9ET8ANX6g</recordid><startdate>199712</startdate><enddate>199712</enddate><creator>Fung, I.</creator><creator>Field, C. B.</creator><creator>Berry, J. A.</creator><creator>Thompson, M. V.</creator><creator>Randerson, J. T.</creator><creator>Malmström, C. M.</creator><creator>Vitousek, P. M.</creator><creator>Collatz, G. James</creator><creator>Sellers, P. J.</creator><creator>Randall, D. A.</creator><creator>Denning, A. S.</creator><creator>Badeck, F.</creator><creator>John, J.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>199712</creationdate><title>Carbon 13 exchanges between the atmosphere and biosphere</title><author>Fung, I. ; Field, C. B. ; Berry, J. A. ; Thompson, M. V. ; Randerson, J. T. ; Malmström, C. M. ; Vitousek, P. M. ; Collatz, G. James ; Sellers, P. J. ; Randall, D. A. ; Denning, A. S. ; Badeck, F. ; John, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5277-362f622f540886d2798d2479fd7d9383ab0aaef5ee93a3cfabd9435bad93f6bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geochemistry</topic><topic>Geochemistry: general, methodology, regional studies</topic><topic>Isotope geochemistry</topic><topic>Isotope geochemistry. Geochronology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fung, I.</creatorcontrib><creatorcontrib>Field, C. B.</creatorcontrib><creatorcontrib>Berry, J. A.</creatorcontrib><creatorcontrib>Thompson, M. V.</creatorcontrib><creatorcontrib>Randerson, J. T.</creatorcontrib><creatorcontrib>Malmström, C. M.</creatorcontrib><creatorcontrib>Vitousek, P. M.</creatorcontrib><creatorcontrib>Collatz, G. James</creatorcontrib><creatorcontrib>Sellers, P. J.</creatorcontrib><creatorcontrib>Randall, D. A.</creatorcontrib><creatorcontrib>Denning, A. S.</creatorcontrib><creatorcontrib>Badeck, F.</creatorcontrib><creatorcontrib>John, J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fung, I.</au><au>Field, C. B.</au><au>Berry, J. A.</au><au>Thompson, M. V.</au><au>Randerson, J. T.</au><au>Malmström, C. M.</au><au>Vitousek, P. M.</au><au>Collatz, G. James</au><au>Sellers, P. J.</au><au>Randall, D. A.</au><au>Denning, A. S.</au><au>Badeck, F.</au><au>John, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon 13 exchanges between the atmosphere and biosphere</atitle><jtitle>Global biogeochemical cycles</jtitle><addtitle>Global Biogeochem. Cycles</addtitle><date>1997-12</date><risdate>1997</risdate><volume>11</volume><issue>4</issue><spage>507</spage><epage>533</epage><pages>507-533</pages><issn>0886-6236</issn><eissn>1944-9224</eissn><coden>GBCYEP</coden><abstract>We present a detailed investigation of the gross 12C and 13C exchanges between the atmosphere and biosphere and their influence on the δ13C variations in the atmosphere. The photosynthetic discrimination Δ against 13C is derived from a biophysical model coupled to a general circulation model [Sellers et al., 1996a], where stomatal conductance and carbon assimilation are determined simultaneously with the ambient climate. The δ13C of the respired carbon is calculated by a biogeochemical model [Potter et al., 1993; Randerson et al., 1996] as the sum of the contributions from compartments with varying ages. The global flux‐weighted mean photosynthetic discrimination is 12–16‰, which is lower than previous estimates. Factors that lower the discrimination are reduced stomatal conductance and C4 photosynthesis. The decreasing atmospheric δ13C causes an isotopic disequilibrium between the outgoing and incoming fluxes; the disequilibrium is ∼0.33‰ for 1988. The disequilibrium is higher than previous estimates because it accounts for the lifetime of trees and for the ages rather than turnover times of the biospheric pools. The atmospheric δ13C signature resulting from the biospheric fluxes is investigated using a three‐dimensional atmospheric tracer model. The isotopic disequilibrium alone produces a hemispheric difference of ∼0.02‰ in atmospheric δ13C, comparable to the signal from a hypothetical carbon sink of 0.5 Gt C yr−1 into the midlatitude northern hemisphere biosphere. However, the rectifier effect, due to the seasonal covariation of CO2 fluxes and height of the atmospheric boundary layer, yields a background δ13C gradient of the opposite sign. These effects nearly cancel thus favoring a stronger net biospheric uptake than without the background CO2 gradient. Our analysis of the globally averaged carbon budget for the decade of the 1980s indicates that the biospheric uptake of fossil fuel CO2 is likely to be greater than the oceanic uptake; the relative proportions of the sinks cannot be uniquely determined using 12C and 13C alone. The land‐ocean sink partitioning requires, in addition, information about the land use source, isotopic disequilibrium associated with gross oceanic exchanges, as well as the fractions of C3 and C4 vegetation involved in the biospheric uptake.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/97GB01751</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0886-6236
ispartof Global biogeochemical cycles, 1997-12, Vol.11 (4), p.507-533
issn 0886-6236
1944-9224
language eng
recordid cdi_proquest_miscellaneous_18117572
source Wiley; Wiley-Blackwell AGU Digital Library
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
Geochemistry
Geochemistry: general, methodology, regional studies
Isotope geochemistry
Isotope geochemistry. Geochronology
title Carbon 13 exchanges between the atmosphere and biosphere
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%2013%20exchanges%20between%20the%20atmosphere%20and%20biosphere&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Fung,%20I.&rft.date=1997-12&rft.volume=11&rft.issue=4&rft.spage=507&rft.epage=533&rft.pages=507-533&rft.issn=0886-6236&rft.eissn=1944-9224&rft.coden=GBCYEP&rft_id=info:doi/10.1029/97GB01751&rft_dat=%3Cproquest_cross%3E18117572%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a5277-362f622f540886d2798d2479fd7d9383ab0aaef5ee93a3cfabd9435bad93f6bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18117572&rft_id=info:pmid/&rfr_iscdi=true