Loading…

A Re-assessment of Narragansett Bay Benthic Habitat Quality Between 1988 and 2008

The first bay-wide synoptic survey of benthic habitat quality in Narragansett Bay, Rhode Island, USA, was conducted in August of 1988. Twenty years later, we revisited the same sampling locations as the original survey using similar sediment profile imagery technology and analysis tools. Like estuar...

Full description

Saved in:
Bibliographic Details
Published in:Estuaries and coasts 2016-09, Vol.39 (5), p.1463-1477
Main Authors: Shumchenia, Emily J., Guarinello, Marisa L., King, John W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The first bay-wide synoptic survey of benthic habitat quality in Narragansett Bay, Rhode Island, USA, was conducted in August of 1988. Twenty years later, we revisited the same sampling locations as the original survey using similar sediment profile imagery technology and analysis tools. Like estuaries throughout the US, increased temperatures and reductions to anthropogenic nutrient inputs have cumulatively affected Narragansett Bay in the intervening 20 years. To understand how these changes may have influenced benthic organic enrichment and habitat quality, we compared the prevalence and spatial arrangement of benthic biotopes (i.e., biotic and abiotic benthic descriptions) between 1988 and 2008 surveys. Biotopes dominated by Ampelisca spp. tubiculous amphipods increased >fivefold between 1988 and 2008, and expanded into the more urban, anthropogenically stressed Providence River estuary. Ampelisca beds occurred at critical boundaries in organic enrichment and habitat quality in both years and indicated the quantity of organic matter reaching the benthos. In general, benthic biotopes reflect the degree of benthic-pelagic coupling and are an important link between estuarine water quality and other marine life. As estuaries globally cope with the effects of increased warming and legislated anthropogenic nutrient reductions, rapid assessments of benthic biotopes will be critical for understanding changes to whole-estuary condition as a result of these cumulative stressors.
ISSN:1559-2723
1559-2731
DOI:10.1007/s12237-016-0095-z