Loading…

Particle breakage and the mobilized drained shear strengths of sand

This paper presents particle breakage and the mobilized drained shear strengths of sand with the purpose of clarifying the influence of particle breakage on the mobilized shear strengths of sand. Several drained triaxial tests were carried out on Silica sand No.5 under 3 MPa confining pressure to pr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mountain science 2016-08, Vol.13 (8), p.1481-1488
Main Authors: Yu, Fang-wei, Su, Li-jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents particle breakage and the mobilized drained shear strengths of sand with the purpose of clarifying the influence of particle breakage on the mobilized shear strengths of sand. Several drained triaxial tests were carried out on Silica sand No.5 under 3 MPa confining pressure to produce the pre-crushed sands in simulating the high- pressure shear process on soil to result in particle breakage, and then the pre-crushed sands were re- sheared in series of drained triaxial tests to investigate the mobilized strengths of the pre-crushed sands in detecting the influence of particle breakage. It was found that, by deteriorating strain-stress behavior, particle breakage resulted in change of stress-dilataney behavior in translation and rotation of the relation of the dilatancy factor and the effective principal stress ratio. For a given initial void ratio, particle breakage resulted in impairment of dilatancy behavior of soil to be more contractive in deterioration of the mobilized friction angle and the mobilized dilatancy angle and reduction of void ratio. However, particle breakage resulted in increase of the mobilized basic friction angle especially before failure. In addition, the influence of particle breakage on the mobilized strengths was revealed to be influenced by the shear stress-strain state.
ISSN:1672-6316
1993-0321
1008-2786
DOI:10.1007/s11629-016-3870-1