Loading…

Hepatotoxicity evaluation of dextran stabilized iron oxide nanoparticles in Wistar rats

[Display omitted] Cellular and organ responses to nanoparticles are relevant in the context of use of nanoparticles for biomedical applications. The purpose of the present study was to determine the potential of dextran stabilized iron oxide nanoparticles (DIONPs) to influence hepatic uptake and con...

Full description

Saved in:
Bibliographic Details
Published in:International journal of pharmaceutics 2016-07, Vol.509 (1-2), p.28-34
Main Authors: Easo, Sheeja Liza, Mohanan, P.V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Cellular and organ responses to nanoparticles are relevant in the context of use of nanoparticles for biomedical applications. The purpose of the present study was to determine the potential of dextran stabilized iron oxide nanoparticles (DIONPs) to influence hepatic uptake and consequently induce hepatotoxic response in rats following intravenous administration. Inductively coupled plasma atomic emission spectroscopy analysis revealed that DIONPs are rapidly taken up into the liver, progressively broken down to iron constituents and exported into blood, with a part of it being retained in the liver. The potential of DIONPs to induce oxidative stress response was determined by evaluating the time-dependent redox defense status. Maximum alterations in antioxidant activities were observed to occur within a period of 7days. However, this effect was not followed by significant increase in lipid peroxidation or modulation of hepatic enzymes such as alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase and bilirubin levels. Overall, these data imply that the liver retains functional integrity with a dose of 10mg/kg DIONPs, although with brief activation of redox defenses.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2016.05.026