Loading…

Effect of polymer type and drug dose on the in vitro and in vivo behavior of amorphous solid dispersions

[Display omitted] This study investigated the non-sink in vitro dissolution behavior and in vivo performance in rats of celecoxib (CCX) amorphous solid dispersions with polyvinyl acetate (PVA), polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) at different drug doses. Both in vitro...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmaceutics and biopharmaceutics 2016-08, Vol.105, p.106-114
Main Authors: Knopp, Matthias Manne, Chourak, Nabil, Khan, Fauzan, Wendelboe, Johan, Langguth, Peter, Rades, Thomas, Holm, René
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] This study investigated the non-sink in vitro dissolution behavior and in vivo performance in rats of celecoxib (CCX) amorphous solid dispersions with polyvinyl acetate (PVA), polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) at different drug doses. Both in vitro and in vivo, the amorphous solid dispersions with the hydrophilic polymers PVP and HPMC led to higher areas under both, the in vitro dissolution and the plasma concentration–time curves (AUC) compared to crystalline and amorphous CCX for all doses. In contrast, the amorphous solid dispersion with the hydrophobic polymer PVA showed a lower AUC both in vitro and in vivo than crystalline CCX. For crystalline CCX and CCX:PVA, the in vitro AUC was limited by the low solubility of the drug and the slow release of the drug from the hydrophobic polymer, respectively. For the supersaturating formulations, amorphous CCX, CCX:PVP and CCX:HPMC, the in vitro performance was mainly dependent on the dissolution rate and precipitation/crystallization inhibition of the polymer. As expected, the crystallization tendency increased with increasing dose, and therefore the in vitro AUCs did not increase proportionally with dose. Even though the in vivo AUC for all formulations increased with increasing dose, the relative bioavailability decreased significantly, indicating that the supersaturating formulations also crystallized in vivo and that the absorption of CCX was solubility-limited. These findings underline the importance of evaluating relevant in vitro doses, in order to rationally assess the performance of amorphous solid dispersions and avoid confusion in early in vivo studies.
ISSN:0939-6411
1873-3441
DOI:10.1016/j.ejpb.2016.05.017