Loading…
A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated
When analyzing pairs of time series, one often needs to know whether a correlation is statistically significant. If the data are Gaussian distributed and not serially correlated, one can use the results of classical statistics to estimate the significance. While some techniques can handle non-Gaussi...
Saved in:
Published in: | Journal of climate 1997-09, Vol.10 (9), p.2147-2153 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2153 |
container_issue | 9 |
container_start_page | 2147 |
container_title | Journal of climate |
container_volume | 10 |
creator | Ebisuzaki, Wesley |
description | When analyzing pairs of time series, one often needs to know whether a correlation is statistically significant. If the data are Gaussian distributed and not serially correlated, one can use the results of classical statistics to estimate the significance. While some techniques can handle non-Gaussian distributions, few methods are available for data with nonzero autocorrelation (i.e., serially correlated). In this paper, a nonparametric method is suggested to estimate the statistical significance of a computed correlation coefficient when serial correlation is a concern. This method compares favorably with conventional methods. |
doi_str_mv | 10.1175/1520-0442(1997)010<2147:amtets>2.0.co;2 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18137408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26243351</jstor_id><sourcerecordid>26243351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-89e4a4a170bfe7b4b1a15ed6152deff1254321a9394c6be30b6068a15de0e9c33</originalsourceid><addsrcrecordid>eNpFkE1rGzEQhkVpIG7SnxDQoZT2sM6MpP1qQ8Bs3CSQkINdehTa3dl6w3rlSPIh_77aOLgnDZpn3mEexi4R5oh5eompgASUEt-wLPPvgHAlUOU_zDZQ8NdiDvPG_hQf2OxIfmQzKEqVFHmanrJP3j8DoMgAZmyz4I8UNrblwfKlD_3WBOJhQ3wVTOjjR2MGvur_jn0Xy7EhbjtueGWdoyESduR_NjS-jdyYYPjCxVlyvRmG1yNG7Tk76czg6fP7e8Z-_1quq7vk4en2vlo8JI2SEJKiJGWUwRzqjvJa1WgwpTaLt7TUdShSJQWaUpaqyWqSUGeQFZFpCahspDxjXw-5O2df9uSD3va-oWEwI9m911igzBUUEbw9gI2z3jvq9M7F692rRtCTaT3505M_PZnW0bSeTOvF43q5XmmhQVdPWsSkL-8rjY-2Ohc19f4YJwqBuUwjdnHAnn2w7n87E0rKFOU_BnKMEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18137408</pqid></control><display><type>article</type><title>A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Ebisuzaki, Wesley</creator><creatorcontrib>Ebisuzaki, Wesley</creatorcontrib><description>When analyzing pairs of time series, one often needs to know whether a correlation is statistically significant. If the data are Gaussian distributed and not serially correlated, one can use the results of classical statistics to estimate the significance. While some techniques can handle non-Gaussian distributions, few methods are available for data with nonzero autocorrelation (i.e., serially correlated). In this paper, a nonparametric method is suggested to estimate the statistical significance of a computed correlation coefficient when serial correlation is a concern. This method compares favorably with conventional methods.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/1520-0442(1997)010<2147:amtets>2.0.co;2</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Autocorrelation ; Correlations ; Earth, ocean, space ; Estimation methods ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Meteorology ; Statistical estimation ; Statistical significance ; Statistics ; Time series</subject><ispartof>Journal of climate, 1997-09, Vol.10 (9), p.2147-2153</ispartof><rights>1997 American Meteorological Society</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26243351$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26243351$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2821735$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ebisuzaki, Wesley</creatorcontrib><title>A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated</title><title>Journal of climate</title><description>When analyzing pairs of time series, one often needs to know whether a correlation is statistically significant. If the data are Gaussian distributed and not serially correlated, one can use the results of classical statistics to estimate the significance. While some techniques can handle non-Gaussian distributions, few methods are available for data with nonzero autocorrelation (i.e., serially correlated). In this paper, a nonparametric method is suggested to estimate the statistical significance of a computed correlation coefficient when serial correlation is a concern. This method compares favorably with conventional methods.</description><subject>Autocorrelation</subject><subject>Correlations</subject><subject>Earth, ocean, space</subject><subject>Estimation methods</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Meteorology</subject><subject>Statistical estimation</subject><subject>Statistical significance</subject><subject>Statistics</subject><subject>Time series</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpFkE1rGzEQhkVpIG7SnxDQoZT2sM6MpP1qQ8Bs3CSQkINdehTa3dl6w3rlSPIh_77aOLgnDZpn3mEexi4R5oh5eompgASUEt-wLPPvgHAlUOU_zDZQ8NdiDvPG_hQf2OxIfmQzKEqVFHmanrJP3j8DoMgAZmyz4I8UNrblwfKlD_3WBOJhQ3wVTOjjR2MGvur_jn0Xy7EhbjtueGWdoyESduR_NjS-jdyYYPjCxVlyvRmG1yNG7Tk76czg6fP7e8Z-_1quq7vk4en2vlo8JI2SEJKiJGWUwRzqjvJa1WgwpTaLt7TUdShSJQWaUpaqyWqSUGeQFZFpCahspDxjXw-5O2df9uSD3va-oWEwI9m911igzBUUEbw9gI2z3jvq9M7F692rRtCTaT3505M_PZnW0bSeTOvF43q5XmmhQVdPWsSkL-8rjY-2Ohc19f4YJwqBuUwjdnHAnn2w7n87E0rKFOU_BnKMEw</recordid><startdate>19970901</startdate><enddate>19970901</enddate><creator>Ebisuzaki, Wesley</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19970901</creationdate><title>A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated</title><author>Ebisuzaki, Wesley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-89e4a4a170bfe7b4b1a15ed6152deff1254321a9394c6be30b6068a15de0e9c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Autocorrelation</topic><topic>Correlations</topic><topic>Earth, ocean, space</topic><topic>Estimation methods</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Meteorology</topic><topic>Statistical estimation</topic><topic>Statistical significance</topic><topic>Statistics</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebisuzaki, Wesley</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebisuzaki, Wesley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated</atitle><jtitle>Journal of climate</jtitle><date>1997-09-01</date><risdate>1997</risdate><volume>10</volume><issue>9</issue><spage>2147</spage><epage>2153</epage><pages>2147-2153</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>When analyzing pairs of time series, one often needs to know whether a correlation is statistically significant. If the data are Gaussian distributed and not serially correlated, one can use the results of classical statistics to estimate the significance. While some techniques can handle non-Gaussian distributions, few methods are available for data with nonzero autocorrelation (i.e., serially correlated). In this paper, a nonparametric method is suggested to estimate the statistical significance of a computed correlation coefficient when serial correlation is a concern. This method compares favorably with conventional methods.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0442(1997)010<2147:amtets>2.0.co;2</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 1997-09, Vol.10 (9), p.2147-2153 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_miscellaneous_18137408 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Autocorrelation Correlations Earth, ocean, space Estimation methods Exact sciences and technology External geophysics Geophysics. Techniques, methods, instrumentation and models Meteorology Statistical estimation Statistical significance Statistics Time series |
title | A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A45%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20to%20Estimate%20the%20Statistical%20Significance%20of%20a%20Correlation%20When%20the%20Data%20Are%20Serially%20Correlated&rft.jtitle=Journal%20of%20climate&rft.au=Ebisuzaki,%20Wesley&rft.date=1997-09-01&rft.volume=10&rft.issue=9&rft.spage=2147&rft.epage=2153&rft.pages=2147-2153&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/1520-0442(1997)010%3C2147:amtets%3E2.0.co;2&rft_dat=%3Cjstor_proqu%3E26243351%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-89e4a4a170bfe7b4b1a15ed6152deff1254321a9394c6be30b6068a15de0e9c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18137408&rft_id=info:pmid/&rft_jstor_id=26243351&rfr_iscdi=true |