Loading…

A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated

When analyzing pairs of time series, one often needs to know whether a correlation is statistically significant. If the data are Gaussian distributed and not serially correlated, one can use the results of classical statistics to estimate the significance. While some techniques can handle non-Gaussi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 1997-09, Vol.10 (9), p.2147-2153
Main Author: Ebisuzaki, Wesley
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2153
container_issue 9
container_start_page 2147
container_title Journal of climate
container_volume 10
creator Ebisuzaki, Wesley
description When analyzing pairs of time series, one often needs to know whether a correlation is statistically significant. If the data are Gaussian distributed and not serially correlated, one can use the results of classical statistics to estimate the significance. While some techniques can handle non-Gaussian distributions, few methods are available for data with nonzero autocorrelation (i.e., serially correlated). In this paper, a nonparametric method is suggested to estimate the statistical significance of a computed correlation coefficient when serial correlation is a concern. This method compares favorably with conventional methods.
doi_str_mv 10.1175/1520-0442(1997)010<2147:amtets>2.0.co;2
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18137408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26243351</jstor_id><sourcerecordid>26243351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-89e4a4a170bfe7b4b1a15ed6152deff1254321a9394c6be30b6068a15de0e9c33</originalsourceid><addsrcrecordid>eNpFkE1rGzEQhkVpIG7SnxDQoZT2sM6MpP1qQ8Bs3CSQkINdehTa3dl6w3rlSPIh_77aOLgnDZpn3mEexi4R5oh5eompgASUEt-wLPPvgHAlUOU_zDZQ8NdiDvPG_hQf2OxIfmQzKEqVFHmanrJP3j8DoMgAZmyz4I8UNrblwfKlD_3WBOJhQ3wVTOjjR2MGvur_jn0Xy7EhbjtueGWdoyESduR_NjS-jdyYYPjCxVlyvRmG1yNG7Tk76czg6fP7e8Z-_1quq7vk4en2vlo8JI2SEJKiJGWUwRzqjvJa1WgwpTaLt7TUdShSJQWaUpaqyWqSUGeQFZFpCahspDxjXw-5O2df9uSD3va-oWEwI9m911igzBUUEbw9gI2z3jvq9M7F692rRtCTaT3505M_PZnW0bSeTOvF43q5XmmhQVdPWsSkL-8rjY-2Ohc19f4YJwqBuUwjdnHAnn2w7n87E0rKFOU_BnKMEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18137408</pqid></control><display><type>article</type><title>A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Ebisuzaki, Wesley</creator><creatorcontrib>Ebisuzaki, Wesley</creatorcontrib><description>When analyzing pairs of time series, one often needs to know whether a correlation is statistically significant. If the data are Gaussian distributed and not serially correlated, one can use the results of classical statistics to estimate the significance. While some techniques can handle non-Gaussian distributions, few methods are available for data with nonzero autocorrelation (i.e., serially correlated). In this paper, a nonparametric method is suggested to estimate the statistical significance of a computed correlation coefficient when serial correlation is a concern. This method compares favorably with conventional methods.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/1520-0442(1997)010&lt;2147:amtets&gt;2.0.co;2</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Autocorrelation ; Correlations ; Earth, ocean, space ; Estimation methods ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Meteorology ; Statistical estimation ; Statistical significance ; Statistics ; Time series</subject><ispartof>Journal of climate, 1997-09, Vol.10 (9), p.2147-2153</ispartof><rights>1997 American Meteorological Society</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26243351$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26243351$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2821735$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ebisuzaki, Wesley</creatorcontrib><title>A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated</title><title>Journal of climate</title><description>When analyzing pairs of time series, one often needs to know whether a correlation is statistically significant. If the data are Gaussian distributed and not serially correlated, one can use the results of classical statistics to estimate the significance. While some techniques can handle non-Gaussian distributions, few methods are available for data with nonzero autocorrelation (i.e., serially correlated). In this paper, a nonparametric method is suggested to estimate the statistical significance of a computed correlation coefficient when serial correlation is a concern. This method compares favorably with conventional methods.</description><subject>Autocorrelation</subject><subject>Correlations</subject><subject>Earth, ocean, space</subject><subject>Estimation methods</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Meteorology</subject><subject>Statistical estimation</subject><subject>Statistical significance</subject><subject>Statistics</subject><subject>Time series</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpFkE1rGzEQhkVpIG7SnxDQoZT2sM6MpP1qQ8Bs3CSQkINdehTa3dl6w3rlSPIh_77aOLgnDZpn3mEexi4R5oh5eompgASUEt-wLPPvgHAlUOU_zDZQ8NdiDvPG_hQf2OxIfmQzKEqVFHmanrJP3j8DoMgAZmyz4I8UNrblwfKlD_3WBOJhQ3wVTOjjR2MGvur_jn0Xy7EhbjtueGWdoyESduR_NjS-jdyYYPjCxVlyvRmG1yNG7Tk76czg6fP7e8Z-_1quq7vk4en2vlo8JI2SEJKiJGWUwRzqjvJa1WgwpTaLt7TUdShSJQWaUpaqyWqSUGeQFZFpCahspDxjXw-5O2df9uSD3va-oWEwI9m911igzBUUEbw9gI2z3jvq9M7F692rRtCTaT3505M_PZnW0bSeTOvF43q5XmmhQVdPWsSkL-8rjY-2Ohc19f4YJwqBuUwjdnHAnn2w7n87E0rKFOU_BnKMEw</recordid><startdate>19970901</startdate><enddate>19970901</enddate><creator>Ebisuzaki, Wesley</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19970901</creationdate><title>A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated</title><author>Ebisuzaki, Wesley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-89e4a4a170bfe7b4b1a15ed6152deff1254321a9394c6be30b6068a15de0e9c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Autocorrelation</topic><topic>Correlations</topic><topic>Earth, ocean, space</topic><topic>Estimation methods</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Meteorology</topic><topic>Statistical estimation</topic><topic>Statistical significance</topic><topic>Statistics</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebisuzaki, Wesley</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebisuzaki, Wesley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated</atitle><jtitle>Journal of climate</jtitle><date>1997-09-01</date><risdate>1997</risdate><volume>10</volume><issue>9</issue><spage>2147</spage><epage>2153</epage><pages>2147-2153</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>When analyzing pairs of time series, one often needs to know whether a correlation is statistically significant. If the data are Gaussian distributed and not serially correlated, one can use the results of classical statistics to estimate the significance. While some techniques can handle non-Gaussian distributions, few methods are available for data with nonzero autocorrelation (i.e., serially correlated). In this paper, a nonparametric method is suggested to estimate the statistical significance of a computed correlation coefficient when serial correlation is a concern. This method compares favorably with conventional methods.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0442(1997)010&lt;2147:amtets&gt;2.0.co;2</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 1997-09, Vol.10 (9), p.2147-2153
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_18137408
source JSTOR Archival Journals and Primary Sources Collection
subjects Autocorrelation
Correlations
Earth, ocean, space
Estimation methods
Exact sciences and technology
External geophysics
Geophysics. Techniques, methods, instrumentation and models
Meteorology
Statistical estimation
Statistical significance
Statistics
Time series
title A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A45%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20to%20Estimate%20the%20Statistical%20Significance%20of%20a%20Correlation%20When%20the%20Data%20Are%20Serially%20Correlated&rft.jtitle=Journal%20of%20climate&rft.au=Ebisuzaki,%20Wesley&rft.date=1997-09-01&rft.volume=10&rft.issue=9&rft.spage=2147&rft.epage=2153&rft.pages=2147-2153&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/1520-0442(1997)010%3C2147:amtets%3E2.0.co;2&rft_dat=%3Cjstor_proqu%3E26243351%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-89e4a4a170bfe7b4b1a15ed6152deff1254321a9394c6be30b6068a15de0e9c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18137408&rft_id=info:pmid/&rft_jstor_id=26243351&rfr_iscdi=true