Loading…

Assessment of soil quality parameters using multivariate analysis in the Rawal Lake watershed

Soil providing a wide array of ecosystem services is subjected to quality deterioration due to natural and anthropogenic factors. Most of the soils in Pakistan have poor status of available plant nutrients and cannot support optimum levels of crop productivity. The present study statistically analyz...

Full description

Saved in:
Bibliographic Details
Published in:Environmental monitoring and assessment 2016-09, Vol.188 (9), p.533-533, Article 533
Main Authors: Firdous, Shahana, Begum, Shaheen, Yasmin, Azra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soil providing a wide array of ecosystem services is subjected to quality deterioration due to natural and anthropogenic factors. Most of the soils in Pakistan have poor status of available plant nutrients and cannot support optimum levels of crop productivity. The present study statistically analyzed ten soil quality parameters in five subwatersheds (Bari Imam, Chattar, Rumli, Shahdra, and Shahpur) of the Rawal Lake. Analysis of variance (ANOVA), cluster analysis (CA), and principal component analysis (PCA) were performed to evaluate correlation in soil quality parameters on spatiotemporal and vertical scales. Soil organic matter, electrical conductivity, nitrates, and sulfates were found to be lower than that required for good quality soil. Soil pH showed significant difference ( p  0.75) and indicated that these were the most influential parameters of first factor or component. Cluster analysis separated five sampling sites into three statistically significant clusters: I (Shahdra-Bari Imam), II (Chattar), and III (Shahpur-Rumli). Among the five sites, Shahdra was found to have good quality soil followed by Bari Imam. The present study illustrated the usefulness of multivariate statistical approaches for the analysis and interpretation of complex datasets to understand variations in soil quality for effective watershed management.
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-016-5527-5