Loading…
Impacts of SSM/I retrieved rainfall rates on numerical prediction of a tropical cyclone
Special Sensor Microwave/Imager (SSM/I) retrieved rainfall rates were assimilated into a limited-area numerical prediction model in an attempt to improve the initial analysis and forecast of a tropical cyclone. Typhoon Flo of 1990, which was observed in an intensive observation period of the Tropica...
Saved in:
Published in: | Monthly weather review 1996-06, Vol.124 (6), p.1181-1198 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Special Sensor Microwave/Imager (SSM/I) retrieved rainfall rates were assimilated into a limited-area numerical prediction model in an attempt to improve the initial analysis and forecast of a tropical cyclone. Typhoon Flo of 1990, which was observed in an intensive observation period of the Tropical Cyclone Motion Experiment-1990, was chosen for this study. The SSM/I retrieved rainfall rates within 888 km (8 degree latitude) of the storm center were incorporated into the initial fields by a reversed Kuo cumulus parameterization. In the procedure used here, the moisture field in the model is adjusted so that the model generates the SSM/I-observed rainfall rates. This scheme is applied through two different assimilation methods. The first method is based on a dynamic initialization in which the prediction model is integrated backward adiabatically to t = -6 h and then forward diabatically for 6 h to the initial time. During the diabatic forward integration, the SSM/I rainfall rates are incorporated using the reversed Kuo cumulus parameterization. The second method is a forward data assimilation integration starting from t = -12 h. From t = -6 h to t = 0, the SSM/I rainfall rates are incorporated, also using the reversed Kuo scheme. During this period, the momentum fields are relaxed to the initial (t = 0) analysis to reduce the initial position error generated during the preforecast integration. Five cases for which SSM/I overpasses were available were tested, including two cases before and three after Flo's recurvature. Forecasts at 48 h are compared with the actual storm track and intensities estimated by the Joint Typhoon Warning Center. For the five cases tested, the assimilation of SSM/I retrieved rainfall rates reduced the average 48-h forecast distance error from 239 km in the control runs to 81 km in the assimilation experiments. It is postulated that the large positive impact was a consequence of the improved forecast intensity and speed of the typhoon when the SSM/I rain-rate data were assimilated. |
---|---|
ISSN: | 0027-0644 1520-0493 |
DOI: | 10.1175/1520-0493(1996)124<1181:iosrrr>2.0.co;2 |