Loading…
A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances
Preference rankings usually depend on the characteristics of both the individuals judging a set of objects and the objects being judged. This topic has been handled in the literature with log-linear representations of the generalized Bradley-Terry model and, recently, with distance-based tree models...
Saved in:
Published in: | Psychometrika 2016-09, Vol.81 (3), p.774-794 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c405t-18242ab784e977d5111e74290b76f7a635c339b03b8d3b3fbde22639f26138ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-18242ab784e977d5111e74290b76f7a635c339b03b8d3b3fbde22639f26138ea3 |
container_end_page | 794 |
container_issue | 3 |
container_start_page | 774 |
container_title | Psychometrika |
container_volume | 81 |
creator | D’Ambrosio, Antonio Heiser, Willem J. |
description | Preference rankings usually depend on the characteristics of both the individuals judging a set of objects and the objects being judged. This topic has been handled in the literature with log-linear representations of the generalized Bradley-Terry model and, recently, with distance-based tree models for rankings. A limitation of these approaches is that they only work with full rankings or with a pre-specified pattern governing the presence of ties, and/or they are based on quite strict distributional assumptions. To overcome these limitations, we propose a new prediction tree method for ranking data that is totally distribution-free. It combines Kemeny’s axiomatic approach to define a unique distance between rankings with the CART approach to find a stable prediction tree. Furthermore, our method is not limited by any particular design of the pattern of ties. The method is evaluated in an extensive full-factorial Monte Carlo study with a new simulation design. |
doi_str_mv | 10.1007/s11336-016-9505-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815697600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1815697600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-18242ab784e977d5111e74290b76f7a635c339b03b8d3b3fbde22639f26138ea3</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMoun78AC8S8OKlOpO0SXr0W1FRRM8hbada3W3XpBX892ZdFREETyG8z7wh8zC2ibCLAHovIEqpEkCV5BlkCS6wERoFCeQGFtkIQMpEopArbDWEJwDI0ZhltiK01LFAjBjt81sqBx-aV-I3zvdN33Rt0z7wK-ofu4rXnef9Y8w8VU05C3lXz241eWpL4reufY584AcuUMXvp5G4oAm1b_yoCb2LTFhnS7UbB9r4PNfY_cnx3eFZcnl9en64f5mUKWR9gkakwhXapJRrXWWISDoVORRa1dopmZVS5gXIwlSykHVRkRBK5rVQKA05ucZ25r1T370MFHo7aUJJ47FrqRuCRYOZyrWKi_kHCkZpA2lEt3-hT93g2_iRD0rpDNIsUjinSt-FEPdjp76ZOP9mEexMl53rslGXnemyGGe2PpuHYkLV98SXnwiIORBi1D6Q__H0n63vn-qdrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810675045</pqid></control><display><type>article</type><title>A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances</title><source>ABI/INFORM Global</source><source>Springer Nature</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>Education Collection</source><creator>D’Ambrosio, Antonio ; Heiser, Willem J.</creator><creatorcontrib>D’Ambrosio, Antonio ; Heiser, Willem J.</creatorcontrib><description>Preference rankings usually depend on the characteristics of both the individuals judging a set of objects and the objects being judged. This topic has been handled in the literature with log-linear representations of the generalized Bradley-Terry model and, recently, with distance-based tree models for rankings. A limitation of these approaches is that they only work with full rankings or with a pre-specified pattern governing the presence of ties, and/or they are based on quite strict distributional assumptions. To overcome these limitations, we propose a new prediction tree method for ranking data that is totally distribution-free. It combines Kemeny’s axiomatic approach to define a unique distance between rankings with the CART approach to find a stable prediction tree. Furthermore, our method is not limited by any particular design of the pattern of ties. The method is evaluated in an extensive full-factorial Monte Carlo study with a new simulation design.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-016-9505-1</identifier><identifier>PMID: 27370072</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Assessment ; Behavioral Science and Psychology ; Busing ; Clustering ; Consensus ; Consumer Behavior ; Data Analysis ; Generalized linear models ; Humanities ; Humans ; Law ; Maximum Likelihood Statistics ; Methods ; Models, Statistical ; Monte Carlo Method ; Monte Carlo Methods ; Multidimensional Scaling ; Preferences ; Principal components analysis ; Principals ; Psychology ; Psychometrics ; Ratings & rankings ; Regression (Statistics) ; Statistical Theory and Methods ; Statistics for Social Sciences ; Testing and Evaluation</subject><ispartof>Psychometrika, 2016-09, Vol.81 (3), p.774-794</ispartof><rights>The Psychometric Society 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-18242ab784e977d5111e74290b76f7a635c339b03b8d3b3fbde22639f26138ea3</citedby><cites>FETCH-LOGICAL-c405t-18242ab784e977d5111e74290b76f7a635c339b03b8d3b3fbde22639f26138ea3</cites><orcidid>0000-0002-1905-037X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1810675045/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1810675045?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,21378,21394,27924,27925,33611,33612,33877,33878,36060,36061,43733,43880,44363,74221,74397,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27370072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>D’Ambrosio, Antonio</creatorcontrib><creatorcontrib>Heiser, Willem J.</creatorcontrib><title>A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><addtitle>Psychometrika</addtitle><description>Preference rankings usually depend on the characteristics of both the individuals judging a set of objects and the objects being judged. This topic has been handled in the literature with log-linear representations of the generalized Bradley-Terry model and, recently, with distance-based tree models for rankings. A limitation of these approaches is that they only work with full rankings or with a pre-specified pattern governing the presence of ties, and/or they are based on quite strict distributional assumptions. To overcome these limitations, we propose a new prediction tree method for ranking data that is totally distribution-free. It combines Kemeny’s axiomatic approach to define a unique distance between rankings with the CART approach to find a stable prediction tree. Furthermore, our method is not limited by any particular design of the pattern of ties. The method is evaluated in an extensive full-factorial Monte Carlo study with a new simulation design.</description><subject>Assessment</subject><subject>Behavioral Science and Psychology</subject><subject>Busing</subject><subject>Clustering</subject><subject>Consensus</subject><subject>Consumer Behavior</subject><subject>Data Analysis</subject><subject>Generalized linear models</subject><subject>Humanities</subject><subject>Humans</subject><subject>Law</subject><subject>Maximum Likelihood Statistics</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo Methods</subject><subject>Multidimensional Scaling</subject><subject>Preferences</subject><subject>Principal components analysis</subject><subject>Principals</subject><subject>Psychology</subject><subject>Psychometrics</subject><subject>Ratings & rankings</subject><subject>Regression (Statistics)</subject><subject>Statistical Theory and Methods</subject><subject>Statistics for Social Sciences</subject><subject>Testing and Evaluation</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>M0C</sourceid><sourceid>M0P</sourceid><recordid>eNqNkU1LxDAQhoMoun78AC8S8OKlOpO0SXr0W1FRRM8hbada3W3XpBX892ZdFREETyG8z7wh8zC2ibCLAHovIEqpEkCV5BlkCS6wERoFCeQGFtkIQMpEopArbDWEJwDI0ZhltiK01LFAjBjt81sqBx-aV-I3zvdN33Rt0z7wK-ofu4rXnef9Y8w8VU05C3lXz241eWpL4reufY584AcuUMXvp5G4oAm1b_yoCb2LTFhnS7UbB9r4PNfY_cnx3eFZcnl9en64f5mUKWR9gkakwhXapJRrXWWISDoVORRa1dopmZVS5gXIwlSykHVRkRBK5rVQKA05ucZ25r1T370MFHo7aUJJ47FrqRuCRYOZyrWKi_kHCkZpA2lEt3-hT93g2_iRD0rpDNIsUjinSt-FEPdjp76ZOP9mEexMl53rslGXnemyGGe2PpuHYkLV98SXnwiIORBi1D6Q__H0n63vn-qdrg</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>D’Ambrosio, Antonio</creator><creator>Heiser, Willem J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TK</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1905-037X</orcidid></search><sort><creationdate>20160901</creationdate><title>A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances</title><author>D’Ambrosio, Antonio ; Heiser, Willem J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-18242ab784e977d5111e74290b76f7a635c339b03b8d3b3fbde22639f26138ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Assessment</topic><topic>Behavioral Science and Psychology</topic><topic>Busing</topic><topic>Clustering</topic><topic>Consensus</topic><topic>Consumer Behavior</topic><topic>Data Analysis</topic><topic>Generalized linear models</topic><topic>Humanities</topic><topic>Humans</topic><topic>Law</topic><topic>Maximum Likelihood Statistics</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo Methods</topic><topic>Multidimensional Scaling</topic><topic>Preferences</topic><topic>Principal components analysis</topic><topic>Principals</topic><topic>Psychology</topic><topic>Psychometrics</topic><topic>Ratings & rankings</topic><topic>Regression (Statistics)</topic><topic>Statistical Theory and Methods</topic><topic>Statistics for Social Sciences</topic><topic>Testing and Evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Ambrosio, Antonio</creatorcontrib><creatorcontrib>Heiser, Willem J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Education Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Ambrosio, Antonio</au><au>Heiser, Willem J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><addtitle>Psychometrika</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>81</volume><issue>3</issue><spage>774</spage><epage>794</epage><pages>774-794</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><abstract>Preference rankings usually depend on the characteristics of both the individuals judging a set of objects and the objects being judged. This topic has been handled in the literature with log-linear representations of the generalized Bradley-Terry model and, recently, with distance-based tree models for rankings. A limitation of these approaches is that they only work with full rankings or with a pre-specified pattern governing the presence of ties, and/or they are based on quite strict distributional assumptions. To overcome these limitations, we propose a new prediction tree method for ranking data that is totally distribution-free. It combines Kemeny’s axiomatic approach to define a unique distance between rankings with the CART approach to find a stable prediction tree. Furthermore, our method is not limited by any particular design of the pattern of ties. The method is evaluated in an extensive full-factorial Monte Carlo study with a new simulation design.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27370072</pmid><doi>10.1007/s11336-016-9505-1</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1905-037X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-3123 |
ispartof | Psychometrika, 2016-09, Vol.81 (3), p.774-794 |
issn | 0033-3123 1860-0980 |
language | eng |
recordid | cdi_proquest_miscellaneous_1815697600 |
source | ABI/INFORM Global; Springer Nature; Social Science Premium Collection (Proquest) (PQ_SDU_P3); Education Collection |
subjects | Assessment Behavioral Science and Psychology Busing Clustering Consensus Consumer Behavior Data Analysis Generalized linear models Humanities Humans Law Maximum Likelihood Statistics Methods Models, Statistical Monte Carlo Method Monte Carlo Methods Multidimensional Scaling Preferences Principal components analysis Principals Psychology Psychometrics Ratings & rankings Regression (Statistics) Statistical Theory and Methods Statistics for Social Sciences Testing and Evaluation |
title | A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Recursive%20Partitioning%20Method%20for%20the%20Prediction%20of%20Preference%20Rankings%20Based%20Upon%20Kemeny%20Distances&rft.jtitle=Psychometrika&rft.au=D%E2%80%99Ambrosio,%20Antonio&rft.date=2016-09-01&rft.volume=81&rft.issue=3&rft.spage=774&rft.epage=794&rft.pages=774-794&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/s11336-016-9505-1&rft_dat=%3Cproquest_cross%3E1815697600%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-18242ab784e977d5111e74290b76f7a635c339b03b8d3b3fbde22639f26138ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1810675045&rft_id=info:pmid/27370072&rfr_iscdi=true |