Loading…

Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for wood‐boring insects that kill angiosperms

63 I. 64 II. 64 III. 65 IV. 71 V. 72 75 References 75 SUMMARY: We review the literature on host resistance of ash to emerald ash borer (EAB, Agrilus planipennis), an invasive species that causes widespread mortality of ash. Manchurian ash (Fraxinus mandshurica), which coevolved with EAB, is more res...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2016-01, Vol.209 (1), p.63-79
Main Authors: Villari, Caterina, Herms, Daniel A, Whitehill, Justin G. A, Cipollini, Don, Bonello, Pierluigi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5524-4c3621627e0d00dfc0e315099e0a9b9b8ecc4077328fb5b8f2f7cd58e75184ef3
cites cdi_FETCH-LOGICAL-c5524-4c3621627e0d00dfc0e315099e0a9b9b8ecc4077328fb5b8f2f7cd58e75184ef3
container_end_page 79
container_issue 1
container_start_page 63
container_title The New phytologist
container_volume 209
creator Villari, Caterina
Herms, Daniel A
Whitehill, Justin G. A
Cipollini, Don
Bonello, Pierluigi
description 63 I. 64 II. 64 III. 65 IV. 71 V. 72 75 References 75 SUMMARY: We review the literature on host resistance of ash to emerald ash borer (EAB, Agrilus planipennis), an invasive species that causes widespread mortality of ash. Manchurian ash (Fraxinus mandshurica), which coevolved with EAB, is more resistant than evolutionarily naïve North American and European congeners. Manchurian ash was less preferred for adult feeding and oviposition than susceptible hosts, more resistant to larval feeding, had higher constitutive concentrations of bark lignans, coumarins, proline, tyramine and defensive proteins, and was characterized by faster oxidation of phenolics. Consistent with EAB being a secondary colonizer of coevolved hosts, drought stress decreased the resistance of Manchurian ash, but had no effect on constitutive bark phenolics, suggesting that they do not contribute to increased susceptibility in response to drought stress. The induced resistance of North American species to EAB in response to the exogenous application of methyl jasmonate was associated with increased bark concentrations of verbascoside, lignin and/or trypsin inhibitors, which decreased larval survival and/or growth in bioassays. This finding suggests that these inherently susceptible species possess latent defenses that are not induced naturally by larval colonization, perhaps because they fail to recognize larval cues or respond quickly enough. Finally, we propose future research directions that would address some critical knowledge gaps.
doi_str_mv 10.1111/nph.13604
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815701511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.209.1.63</jstor_id><sourcerecordid>newphytologist.209.1.63</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5524-4c3621627e0d00dfc0e315099e0a9b9b8ecc4077328fb5b8f2f7cd58e75184ef3</originalsourceid><addsrcrecordid>eNqF0lFr1TAUB_AiipvTB7-ABnxR2N1O0jZNHmWoE4YOdOBbSNPT3lzbpsvp5XLf_AjiR_STmLu77UEQ-xJofucfwj9Z9pzDCU_f6TgtT3guoXiQHfJC6oXiefUwOwQQaiEL-e0ge0K0AgBdSvE4OxBSSKULfZj9uoyhi0jE7Niwzk7E_MjWY4OR5vTLjx0b0C3t6GkgFlpmacnmiMjSlN8Zh2wODAeMtm9utusQMR4zy4bQYM_aENkmhOb3j59pZ5foR0I3E5uXdmbffd-n0zsfaMI40NPsUWt7wme361F29f7d17PzxcXnDx_P3l4sXFmKYlG4XAouRYXQADStA8x5CVojWF3rWqFzBVRVLlRbl7VqRVu5plRYlVwV2OZH2et97hTD9RppNoMnh31vRwxrMlzxsgJecv5_WuVKcaUkJPrqL7oK6zimi-xUpbXkukrqzV65GIgitmaKfrBxaziYXacmdWpuOk32xW3iuh6wuZd3JSZwugcb3-P230nm0-X5XeTxfmJFc4j3EyNupuV2Dn3oUrNGgDbcyDzxl3ve2mBsFz2Zqy8CuATg6Uml-_wBKbjGuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1737996197</pqid></control><display><type>article</type><title>Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for wood‐boring insects that kill angiosperms</title><source>Wiley</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Villari, Caterina ; Herms, Daniel A ; Whitehill, Justin G. A ; Cipollini, Don ; Bonello, Pierluigi</creator><creatorcontrib>Villari, Caterina ; Herms, Daniel A ; Whitehill, Justin G. A ; Cipollini, Don ; Bonello, Pierluigi</creatorcontrib><description>63 I. 64 II. 64 III. 65 IV. 71 V. 72 75 References 75 SUMMARY: We review the literature on host resistance of ash to emerald ash borer (EAB, Agrilus planipennis), an invasive species that causes widespread mortality of ash. Manchurian ash (Fraxinus mandshurica), which coevolved with EAB, is more resistant than evolutionarily naïve North American and European congeners. Manchurian ash was less preferred for adult feeding and oviposition than susceptible hosts, more resistant to larval feeding, had higher constitutive concentrations of bark lignans, coumarins, proline, tyramine and defensive proteins, and was characterized by faster oxidation of phenolics. Consistent with EAB being a secondary colonizer of coevolved hosts, drought stress decreased the resistance of Manchurian ash, but had no effect on constitutive bark phenolics, suggesting that they do not contribute to increased susceptibility in response to drought stress. The induced resistance of North American species to EAB in response to the exogenous application of methyl jasmonate was associated with increased bark concentrations of verbascoside, lignin and/or trypsin inhibitors, which decreased larval survival and/or growth in bioassays. This finding suggests that these inherently susceptible species possess latent defenses that are not induced naturally by larval colonization, perhaps because they fail to recognize larval cues or respond quickly enough. Finally, we propose future research directions that would address some critical knowledge gaps.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.13604</identifier><identifier>PMID: 26268949</identifier><language>eng</language><publisher>England: Academic Press</publisher><subject>Acetates - pharmacology ; adults ; Agrilus ; Agrilus planipennis ; Animals ; Anti-Infective Agents - metabolism ; Antibiosis ; bark ; bioassays ; boring insects ; coevolution ; Coleoptera - physiology ; constitutive defense ; coumarins ; Cyclopentanes - pharmacology ; emerald ash borer ; Fraxinus ; Fraxinus - immunology ; Fraxinus - parasitology ; Fraxinus mandshurica ; Glucosides - metabolism ; host defense mechanisms ; hosts ; induced defense ; induced resistance ; invasive species ; Larva ; larvae ; lignans ; lignin ; Lignin - metabolism ; Magnoliopsida - immunology ; Magnoliopsida - parasitology ; methyl jasmonate ; Models, Biological ; mortality ; Oviposition ; oxidation ; Oxylipins - pharmacology ; Phenols - metabolism ; phylogeny ; Plant Growth Regulators - pharmacology ; plant–insect interactions ; proline ; proteins ; Species Specificity ; Tansley reviews ; trypsin inhibitors ; Trypsin Inhibitors - metabolism ; tyramine ; verbascoside ; water stress ; Wood ; wood‐borers</subject><ispartof>The New phytologist, 2016-01, Vol.209 (1), p.63-79</ispartof><rights>2015 New Phytologist Trust</rights><rights>2015 The Authors. New Phytologist © 2015 New Phytologist Trust</rights><rights>2015 The Authors. New Phytologist © 2015 New Phytologist Trust.</rights><rights>Copyright © 2015 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5524-4c3621627e0d00dfc0e315099e0a9b9b8ecc4077328fb5b8f2f7cd58e75184ef3</citedby><cites>FETCH-LOGICAL-c5524-4c3621627e0d00dfc0e315099e0a9b9b8ecc4077328fb5b8f2f7cd58e75184ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.209.1.63$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.209.1.63$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26268949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Villari, Caterina</creatorcontrib><creatorcontrib>Herms, Daniel A</creatorcontrib><creatorcontrib>Whitehill, Justin G. A</creatorcontrib><creatorcontrib>Cipollini, Don</creatorcontrib><creatorcontrib>Bonello, Pierluigi</creatorcontrib><title>Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for wood‐boring insects that kill angiosperms</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>63 I. 64 II. 64 III. 65 IV. 71 V. 72 75 References 75 SUMMARY: We review the literature on host resistance of ash to emerald ash borer (EAB, Agrilus planipennis), an invasive species that causes widespread mortality of ash. Manchurian ash (Fraxinus mandshurica), which coevolved with EAB, is more resistant than evolutionarily naïve North American and European congeners. Manchurian ash was less preferred for adult feeding and oviposition than susceptible hosts, more resistant to larval feeding, had higher constitutive concentrations of bark lignans, coumarins, proline, tyramine and defensive proteins, and was characterized by faster oxidation of phenolics. Consistent with EAB being a secondary colonizer of coevolved hosts, drought stress decreased the resistance of Manchurian ash, but had no effect on constitutive bark phenolics, suggesting that they do not contribute to increased susceptibility in response to drought stress. The induced resistance of North American species to EAB in response to the exogenous application of methyl jasmonate was associated with increased bark concentrations of verbascoside, lignin and/or trypsin inhibitors, which decreased larval survival and/or growth in bioassays. This finding suggests that these inherently susceptible species possess latent defenses that are not induced naturally by larval colonization, perhaps because they fail to recognize larval cues or respond quickly enough. Finally, we propose future research directions that would address some critical knowledge gaps.</description><subject>Acetates - pharmacology</subject><subject>adults</subject><subject>Agrilus</subject><subject>Agrilus planipennis</subject><subject>Animals</subject><subject>Anti-Infective Agents - metabolism</subject><subject>Antibiosis</subject><subject>bark</subject><subject>bioassays</subject><subject>boring insects</subject><subject>coevolution</subject><subject>Coleoptera - physiology</subject><subject>constitutive defense</subject><subject>coumarins</subject><subject>Cyclopentanes - pharmacology</subject><subject>emerald ash borer</subject><subject>Fraxinus</subject><subject>Fraxinus - immunology</subject><subject>Fraxinus - parasitology</subject><subject>Fraxinus mandshurica</subject><subject>Glucosides - metabolism</subject><subject>host defense mechanisms</subject><subject>hosts</subject><subject>induced defense</subject><subject>induced resistance</subject><subject>invasive species</subject><subject>Larva</subject><subject>larvae</subject><subject>lignans</subject><subject>lignin</subject><subject>Lignin - metabolism</subject><subject>Magnoliopsida - immunology</subject><subject>Magnoliopsida - parasitology</subject><subject>methyl jasmonate</subject><subject>Models, Biological</subject><subject>mortality</subject><subject>Oviposition</subject><subject>oxidation</subject><subject>Oxylipins - pharmacology</subject><subject>Phenols - metabolism</subject><subject>phylogeny</subject><subject>Plant Growth Regulators - pharmacology</subject><subject>plant–insect interactions</subject><subject>proline</subject><subject>proteins</subject><subject>Species Specificity</subject><subject>Tansley reviews</subject><subject>trypsin inhibitors</subject><subject>Trypsin Inhibitors - metabolism</subject><subject>tyramine</subject><subject>verbascoside</subject><subject>water stress</subject><subject>Wood</subject><subject>wood‐borers</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0lFr1TAUB_AiipvTB7-ABnxR2N1O0jZNHmWoE4YOdOBbSNPT3lzbpsvp5XLf_AjiR_STmLu77UEQ-xJofucfwj9Z9pzDCU_f6TgtT3guoXiQHfJC6oXiefUwOwQQaiEL-e0ge0K0AgBdSvE4OxBSSKULfZj9uoyhi0jE7Niwzk7E_MjWY4OR5vTLjx0b0C3t6GkgFlpmacnmiMjSlN8Zh2wODAeMtm9utusQMR4zy4bQYM_aENkmhOb3j59pZ5foR0I3E5uXdmbffd-n0zsfaMI40NPsUWt7wme361F29f7d17PzxcXnDx_P3l4sXFmKYlG4XAouRYXQADStA8x5CVojWF3rWqFzBVRVLlRbl7VqRVu5plRYlVwV2OZH2et97hTD9RppNoMnh31vRwxrMlzxsgJecv5_WuVKcaUkJPrqL7oK6zimi-xUpbXkukrqzV65GIgitmaKfrBxaziYXacmdWpuOk32xW3iuh6wuZd3JSZwugcb3-P230nm0-X5XeTxfmJFc4j3EyNupuV2Dn3oUrNGgDbcyDzxl3ve2mBsFz2Zqy8CuATg6Uml-_wBKbjGuA</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Villari, Caterina</creator><creator>Herms, Daniel A</creator><creator>Whitehill, Justin G. A</creator><creator>Cipollini, Don</creator><creator>Bonello, Pierluigi</creator><general>Academic Press</general><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7SS</scope></search><sort><creationdate>201601</creationdate><title>Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for wood‐boring insects that kill angiosperms</title><author>Villari, Caterina ; Herms, Daniel A ; Whitehill, Justin G. A ; Cipollini, Don ; Bonello, Pierluigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5524-4c3621627e0d00dfc0e315099e0a9b9b8ecc4077328fb5b8f2f7cd58e75184ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acetates - pharmacology</topic><topic>adults</topic><topic>Agrilus</topic><topic>Agrilus planipennis</topic><topic>Animals</topic><topic>Anti-Infective Agents - metabolism</topic><topic>Antibiosis</topic><topic>bark</topic><topic>bioassays</topic><topic>boring insects</topic><topic>coevolution</topic><topic>Coleoptera - physiology</topic><topic>constitutive defense</topic><topic>coumarins</topic><topic>Cyclopentanes - pharmacology</topic><topic>emerald ash borer</topic><topic>Fraxinus</topic><topic>Fraxinus - immunology</topic><topic>Fraxinus - parasitology</topic><topic>Fraxinus mandshurica</topic><topic>Glucosides - metabolism</topic><topic>host defense mechanisms</topic><topic>hosts</topic><topic>induced defense</topic><topic>induced resistance</topic><topic>invasive species</topic><topic>Larva</topic><topic>larvae</topic><topic>lignans</topic><topic>lignin</topic><topic>Lignin - metabolism</topic><topic>Magnoliopsida - immunology</topic><topic>Magnoliopsida - parasitology</topic><topic>methyl jasmonate</topic><topic>Models, Biological</topic><topic>mortality</topic><topic>Oviposition</topic><topic>oxidation</topic><topic>Oxylipins - pharmacology</topic><topic>Phenols - metabolism</topic><topic>phylogeny</topic><topic>Plant Growth Regulators - pharmacology</topic><topic>plant–insect interactions</topic><topic>proline</topic><topic>proteins</topic><topic>Species Specificity</topic><topic>Tansley reviews</topic><topic>trypsin inhibitors</topic><topic>Trypsin Inhibitors - metabolism</topic><topic>tyramine</topic><topic>verbascoside</topic><topic>water stress</topic><topic>Wood</topic><topic>wood‐borers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villari, Caterina</creatorcontrib><creatorcontrib>Herms, Daniel A</creatorcontrib><creatorcontrib>Whitehill, Justin G. A</creatorcontrib><creatorcontrib>Cipollini, Don</creatorcontrib><creatorcontrib>Bonello, Pierluigi</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Entomology Abstracts (Full archive)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villari, Caterina</au><au>Herms, Daniel A</au><au>Whitehill, Justin G. A</au><au>Cipollini, Don</au><au>Bonello, Pierluigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for wood‐boring insects that kill angiosperms</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2016-01</date><risdate>2016</risdate><volume>209</volume><issue>1</issue><spage>63</spage><epage>79</epage><pages>63-79</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>63 I. 64 II. 64 III. 65 IV. 71 V. 72 75 References 75 SUMMARY: We review the literature on host resistance of ash to emerald ash borer (EAB, Agrilus planipennis), an invasive species that causes widespread mortality of ash. Manchurian ash (Fraxinus mandshurica), which coevolved with EAB, is more resistant than evolutionarily naïve North American and European congeners. Manchurian ash was less preferred for adult feeding and oviposition than susceptible hosts, more resistant to larval feeding, had higher constitutive concentrations of bark lignans, coumarins, proline, tyramine and defensive proteins, and was characterized by faster oxidation of phenolics. Consistent with EAB being a secondary colonizer of coevolved hosts, drought stress decreased the resistance of Manchurian ash, but had no effect on constitutive bark phenolics, suggesting that they do not contribute to increased susceptibility in response to drought stress. The induced resistance of North American species to EAB in response to the exogenous application of methyl jasmonate was associated with increased bark concentrations of verbascoside, lignin and/or trypsin inhibitors, which decreased larval survival and/or growth in bioassays. This finding suggests that these inherently susceptible species possess latent defenses that are not induced naturally by larval colonization, perhaps because they fail to recognize larval cues or respond quickly enough. Finally, we propose future research directions that would address some critical knowledge gaps.</abstract><cop>England</cop><pub>Academic Press</pub><pmid>26268949</pmid><doi>10.1111/nph.13604</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2016-01, Vol.209 (1), p.63-79
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_1815701511
source Wiley; JSTOR Archival Journals and Primary Sources Collection
subjects Acetates - pharmacology
adults
Agrilus
Agrilus planipennis
Animals
Anti-Infective Agents - metabolism
Antibiosis
bark
bioassays
boring insects
coevolution
Coleoptera - physiology
constitutive defense
coumarins
Cyclopentanes - pharmacology
emerald ash borer
Fraxinus
Fraxinus - immunology
Fraxinus - parasitology
Fraxinus mandshurica
Glucosides - metabolism
host defense mechanisms
hosts
induced defense
induced resistance
invasive species
Larva
larvae
lignans
lignin
Lignin - metabolism
Magnoliopsida - immunology
Magnoliopsida - parasitology
methyl jasmonate
Models, Biological
mortality
Oviposition
oxidation
Oxylipins - pharmacology
Phenols - metabolism
phylogeny
Plant Growth Regulators - pharmacology
plant–insect interactions
proline
proteins
Species Specificity
Tansley reviews
trypsin inhibitors
Trypsin Inhibitors - metabolism
tyramine
verbascoside
water stress
Wood
wood‐borers
title Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for wood‐boring insects that kill angiosperms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A53%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20and%20gaps%20in%20understanding%20mechanisms%20of%20ash%20tree%20resistance%20to%20emerald%20ash%20borer,%20a%20model%20for%20wood%E2%80%90boring%20insects%20that%20kill%20angiosperms&rft.jtitle=The%20New%20phytologist&rft.au=Villari,%20Caterina&rft.date=2016-01&rft.volume=209&rft.issue=1&rft.spage=63&rft.epage=79&rft.pages=63-79&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.13604&rft_dat=%3Cjstor_proqu%3Enewphytologist.209.1.63%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5524-4c3621627e0d00dfc0e315099e0a9b9b8ecc4077328fb5b8f2f7cd58e75184ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1737996197&rft_id=info:pmid/26268949&rft_jstor_id=newphytologist.209.1.63&rfr_iscdi=true