Loading…

Legacy effects of drought in the southwestern United States: A multi-species synthesis

Understanding impacts of drought on tree growth and forest health is of major concern given projected climate change. Droughts may become more common in the Southwest due to extreme temperatures that will drive increased evapotranspiration and lower soil moisture, in combination with uncertain preci...

Full description

Saved in:
Bibliographic Details
Published in:Ecological monographs 2016-08, Vol.86 (3), p.312-326
Main Authors: Peltier, Drew M. P., Fell, Michael, Ogle, Kiona
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2639-f96b9007b9d000445839e61f086e5603f8491280bbd85437c51a7bc0efb895fe3
cites cdi_FETCH-LOGICAL-c2639-f96b9007b9d000445839e61f086e5603f8491280bbd85437c51a7bc0efb895fe3
container_end_page 326
container_issue 3
container_start_page 312
container_title Ecological monographs
container_volume 86
creator Peltier, Drew M. P.
Fell, Michael
Ogle, Kiona
description Understanding impacts of drought on tree growth and forest health is of major concern given projected climate change. Droughts may become more common in the Southwest due to extreme temperatures that will drive increased evapotranspiration and lower soil moisture, in combination with uncertain precipitation changes. Utilizing ~1.3 million tree-ring widths from the International Tree Ring Data Bank representing 10 species (eight conifers, two oaks) in the Southwest, we evaluated the effects of drought on tree growth. We categorized ring widths by formation year in relation to drought (pre-drought, drought year, and post-drought), and we used a mixed-effects model to estimate the effects of current and antecedent precipitation and temperature on tree growth during the post-drought recovery period. This allowed us to assess changes in sensitivity of tree growth to precipitation and temperature at multiple timescales following multiple droughts, and to evaluate drought resistance and recovery in these species. The effects of precipitation and temperature on ring widths following drought varied among species and time since drought. Across species, 16% of the climate effects (i.e., "sensitivities") were significantly different from their pre-drought values. Species differed, with some showing increased sensitivities to precipitation and temperature following drought, and others showing decreased sensitivities. Furthermore, some species (e.g., Abies concolor and Pinus ponderosa) showed low resistance and slow recovery, with changes in growth sensitivities persisting up to 5 yr; others (e.g., Juniper spp.) showed high resistance, such that their climatic sensitivities did not change. Among species, the importance of different antecedent climate variables changed with time since drought. Though a majority of species responded positively to same-year precipitation pre-drought, all 10 species were positively affected by same-year precipitation the second year after drought. Our results demonstrate tree growth sensitivities vary among species and with time since drought, raising questions about physiological mechanisms and implications for forest health under future drought.
doi_str_mv 10.1002/ecm.1219
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815710159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24821213</jstor_id><sourcerecordid>24821213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2639-f96b9007b9d000445839e61f086e5603f8491280bbd85437c51a7bc0efb895fe3</originalsourceid><addsrcrecordid>eNp10F1LwzAUBuAgCs4p-AeEgDfedCZp0ybejTE_YOKFztvSZidbR9fOnJTRf2_GhoLg1SGcJ4eXl5BrzkacMXEPZjPigusTMuBSZlHGuDwlA8a4iHTK5Tm5QFyz_VvrAfmcwbIwPQVrwXikraUL13bLladVQ_0KKLadX-0APbiGzpvKw4K--8IDPtAx3XS1ryLcgqkAKfZN-IIVXpIzW9QIV8c5JPPH6cfkOZq9Pb1MxrPIiDTWkdVpqRnLSr0IiZJEqlhDyi1TKciUxVYlmgvFynKhZBJnRvIiKw0DWyotLcRDcne4u3XtVxdC5psKDdR10UDbYc4VlxkPFehAb__Qddu5JqTbKyGEShj_PWhci-jA5ltXbQrX55zl-4LzUHC-LzjQ6EB3VQ39vy6fTl6P_ubg1-hb9-NFokTYx_E3zzeECw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812228401</pqid></control><display><type>article</type><title>Legacy effects of drought in the southwestern United States: A multi-species synthesis</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Peltier, Drew M. P. ; Fell, Michael ; Ogle, Kiona</creator><creatorcontrib>Peltier, Drew M. P. ; Fell, Michael ; Ogle, Kiona</creatorcontrib><description>Understanding impacts of drought on tree growth and forest health is of major concern given projected climate change. Droughts may become more common in the Southwest due to extreme temperatures that will drive increased evapotranspiration and lower soil moisture, in combination with uncertain precipitation changes. Utilizing ~1.3 million tree-ring widths from the International Tree Ring Data Bank representing 10 species (eight conifers, two oaks) in the Southwest, we evaluated the effects of drought on tree growth. We categorized ring widths by formation year in relation to drought (pre-drought, drought year, and post-drought), and we used a mixed-effects model to estimate the effects of current and antecedent precipitation and temperature on tree growth during the post-drought recovery period. This allowed us to assess changes in sensitivity of tree growth to precipitation and temperature at multiple timescales following multiple droughts, and to evaluate drought resistance and recovery in these species. The effects of precipitation and temperature on ring widths following drought varied among species and time since drought. Across species, 16% of the climate effects (i.e., "sensitivities") were significantly different from their pre-drought values. Species differed, with some showing increased sensitivities to precipitation and temperature following drought, and others showing decreased sensitivities. Furthermore, some species (e.g., Abies concolor and Pinus ponderosa) showed low resistance and slow recovery, with changes in growth sensitivities persisting up to 5 yr; others (e.g., Juniper spp.) showed high resistance, such that their climatic sensitivities did not change. Among species, the importance of different antecedent climate variables changed with time since drought. Though a majority of species responded positively to same-year precipitation pre-drought, all 10 species were positively affected by same-year precipitation the second year after drought. Our results demonstrate tree growth sensitivities vary among species and with time since drought, raising questions about physiological mechanisms and implications for forest health under future drought.</description><identifier>ISSN: 0012-9615</identifier><identifier>EISSN: 1557-7015</identifier><identifier>DOI: 10.1002/ecm.1219</identifier><identifier>CODEN: ELMOAQ</identifier><language>eng</language><publisher>Durham: ECOLOGICAL SOCIETY OF AMERICA</publisher><subject>Abies concolor ; Bayesian ; Climate change ; dendrochronology ; Drought ; drought resistance ; ecological memory ; Effects ; lag responses ; legacy effects ; non‐structural carbohydrates ; Pinus ponderosa ; Precipitation ; Temperature</subject><ispartof>Ecological monographs, 2016-08, Vol.86 (3), p.312-326</ispartof><rights>Copyright © 2016 Ecological Society of America</rights><rights>2016 by the Ecological Society of America</rights><rights>Copyright Ecological Society of America Aug 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2639-f96b9007b9d000445839e61f086e5603f8491280bbd85437c51a7bc0efb895fe3</citedby><cites>FETCH-LOGICAL-c2639-f96b9007b9d000445839e61f086e5603f8491280bbd85437c51a7bc0efb895fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24821213$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24821213$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,58236,58469</link.rule.ids></links><search><creatorcontrib>Peltier, Drew M. P.</creatorcontrib><creatorcontrib>Fell, Michael</creatorcontrib><creatorcontrib>Ogle, Kiona</creatorcontrib><title>Legacy effects of drought in the southwestern United States: A multi-species synthesis</title><title>Ecological monographs</title><description>Understanding impacts of drought on tree growth and forest health is of major concern given projected climate change. Droughts may become more common in the Southwest due to extreme temperatures that will drive increased evapotranspiration and lower soil moisture, in combination with uncertain precipitation changes. Utilizing ~1.3 million tree-ring widths from the International Tree Ring Data Bank representing 10 species (eight conifers, two oaks) in the Southwest, we evaluated the effects of drought on tree growth. We categorized ring widths by formation year in relation to drought (pre-drought, drought year, and post-drought), and we used a mixed-effects model to estimate the effects of current and antecedent precipitation and temperature on tree growth during the post-drought recovery period. This allowed us to assess changes in sensitivity of tree growth to precipitation and temperature at multiple timescales following multiple droughts, and to evaluate drought resistance and recovery in these species. The effects of precipitation and temperature on ring widths following drought varied among species and time since drought. Across species, 16% of the climate effects (i.e., "sensitivities") were significantly different from their pre-drought values. Species differed, with some showing increased sensitivities to precipitation and temperature following drought, and others showing decreased sensitivities. Furthermore, some species (e.g., Abies concolor and Pinus ponderosa) showed low resistance and slow recovery, with changes in growth sensitivities persisting up to 5 yr; others (e.g., Juniper spp.) showed high resistance, such that their climatic sensitivities did not change. Among species, the importance of different antecedent climate variables changed with time since drought. Though a majority of species responded positively to same-year precipitation pre-drought, all 10 species were positively affected by same-year precipitation the second year after drought. Our results demonstrate tree growth sensitivities vary among species and with time since drought, raising questions about physiological mechanisms and implications for forest health under future drought.</description><subject>Abies concolor</subject><subject>Bayesian</subject><subject>Climate change</subject><subject>dendrochronology</subject><subject>Drought</subject><subject>drought resistance</subject><subject>ecological memory</subject><subject>Effects</subject><subject>lag responses</subject><subject>legacy effects</subject><subject>non‐structural carbohydrates</subject><subject>Pinus ponderosa</subject><subject>Precipitation</subject><subject>Temperature</subject><issn>0012-9615</issn><issn>1557-7015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUBuAgCs4p-AeEgDfedCZp0ybejTE_YOKFztvSZidbR9fOnJTRf2_GhoLg1SGcJ4eXl5BrzkacMXEPZjPigusTMuBSZlHGuDwlA8a4iHTK5Tm5QFyz_VvrAfmcwbIwPQVrwXikraUL13bLladVQ_0KKLadX-0APbiGzpvKw4K--8IDPtAx3XS1ryLcgqkAKfZN-IIVXpIzW9QIV8c5JPPH6cfkOZq9Pb1MxrPIiDTWkdVpqRnLSr0IiZJEqlhDyi1TKciUxVYlmgvFynKhZBJnRvIiKw0DWyotLcRDcne4u3XtVxdC5psKDdR10UDbYc4VlxkPFehAb__Qddu5JqTbKyGEShj_PWhci-jA5ltXbQrX55zl-4LzUHC-LzjQ6EB3VQ39vy6fTl6P_ubg1-hb9-NFokTYx_E3zzeECw</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Peltier, Drew M. P.</creator><creator>Fell, Michael</creator><creator>Ogle, Kiona</creator><general>ECOLOGICAL SOCIETY OF AMERICA</general><general>Ecological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>C1K</scope><scope>M7N</scope></search><sort><creationdate>20160801</creationdate><title>Legacy effects of drought in the southwestern United States: A multi-species synthesis</title><author>Peltier, Drew M. P. ; Fell, Michael ; Ogle, Kiona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2639-f96b9007b9d000445839e61f086e5603f8491280bbd85437c51a7bc0efb895fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Abies concolor</topic><topic>Bayesian</topic><topic>Climate change</topic><topic>dendrochronology</topic><topic>Drought</topic><topic>drought resistance</topic><topic>ecological memory</topic><topic>Effects</topic><topic>lag responses</topic><topic>legacy effects</topic><topic>non‐structural carbohydrates</topic><topic>Pinus ponderosa</topic><topic>Precipitation</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peltier, Drew M. P.</creatorcontrib><creatorcontrib>Fell, Michael</creatorcontrib><creatorcontrib>Ogle, Kiona</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Ecological monographs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peltier, Drew M. P.</au><au>Fell, Michael</au><au>Ogle, Kiona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Legacy effects of drought in the southwestern United States: A multi-species synthesis</atitle><jtitle>Ecological monographs</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>86</volume><issue>3</issue><spage>312</spage><epage>326</epage><pages>312-326</pages><issn>0012-9615</issn><eissn>1557-7015</eissn><coden>ELMOAQ</coden><abstract>Understanding impacts of drought on tree growth and forest health is of major concern given projected climate change. Droughts may become more common in the Southwest due to extreme temperatures that will drive increased evapotranspiration and lower soil moisture, in combination with uncertain precipitation changes. Utilizing ~1.3 million tree-ring widths from the International Tree Ring Data Bank representing 10 species (eight conifers, two oaks) in the Southwest, we evaluated the effects of drought on tree growth. We categorized ring widths by formation year in relation to drought (pre-drought, drought year, and post-drought), and we used a mixed-effects model to estimate the effects of current and antecedent precipitation and temperature on tree growth during the post-drought recovery period. This allowed us to assess changes in sensitivity of tree growth to precipitation and temperature at multiple timescales following multiple droughts, and to evaluate drought resistance and recovery in these species. The effects of precipitation and temperature on ring widths following drought varied among species and time since drought. Across species, 16% of the climate effects (i.e., "sensitivities") were significantly different from their pre-drought values. Species differed, with some showing increased sensitivities to precipitation and temperature following drought, and others showing decreased sensitivities. Furthermore, some species (e.g., Abies concolor and Pinus ponderosa) showed low resistance and slow recovery, with changes in growth sensitivities persisting up to 5 yr; others (e.g., Juniper spp.) showed high resistance, such that their climatic sensitivities did not change. Among species, the importance of different antecedent climate variables changed with time since drought. Though a majority of species responded positively to same-year precipitation pre-drought, all 10 species were positively affected by same-year precipitation the second year after drought. Our results demonstrate tree growth sensitivities vary among species and with time since drought, raising questions about physiological mechanisms and implications for forest health under future drought.</abstract><cop>Durham</cop><pub>ECOLOGICAL SOCIETY OF AMERICA</pub><doi>10.1002/ecm.1219</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-9615
ispartof Ecological monographs, 2016-08, Vol.86 (3), p.312-326
issn 0012-9615
1557-7015
language eng
recordid cdi_proquest_miscellaneous_1815710159
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list); JSTOR Archival Journals and Primary Sources Collection
subjects Abies concolor
Bayesian
Climate change
dendrochronology
Drought
drought resistance
ecological memory
Effects
lag responses
legacy effects
non‐structural carbohydrates
Pinus ponderosa
Precipitation
Temperature
title Legacy effects of drought in the southwestern United States: A multi-species synthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Legacy%20effects%20of%20drought%20in%20the%20southwestern%20United%20States:%20A%20multi-species%20synthesis&rft.jtitle=Ecological%20monographs&rft.au=Peltier,%20Drew%20M.%20P.&rft.date=2016-08-01&rft.volume=86&rft.issue=3&rft.spage=312&rft.epage=326&rft.pages=312-326&rft.issn=0012-9615&rft.eissn=1557-7015&rft.coden=ELMOAQ&rft_id=info:doi/10.1002/ecm.1219&rft_dat=%3Cjstor_proqu%3E24821213%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2639-f96b9007b9d000445839e61f086e5603f8491280bbd85437c51a7bc0efb895fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1812228401&rft_id=info:pmid/&rft_jstor_id=24821213&rfr_iscdi=true