Loading…

Kramers' rate for systems with multiplicative noise

Kramers' rate for the passage of trajectories X(t) over an energy barrier due to thermal or other fluctuations is usually associated with additive noise. We present a generalization of Kramers' rate for systems with multiplicative noise. We show that the expression commonly used in the lit...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2016-07, Vol.94 (1-1), p.012101-012101, Article 012101
Main Authors: Rosas, Alexandre, Pinto, Italo'Ivo Lima Dias, Lindenberg, Katja
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-b0361151df91f1b55e3e59c61fdcaf5a7a547deac45516c5122056ce53dc457e3
cites cdi_FETCH-LOGICAL-c347t-b0361151df91f1b55e3e59c61fdcaf5a7a547deac45516c5122056ce53dc457e3
container_end_page 012101
container_issue 1-1
container_start_page 012101
container_title Physical review. E
container_volume 94
creator Rosas, Alexandre
Pinto, Italo'Ivo Lima Dias
Lindenberg, Katja
description Kramers' rate for the passage of trajectories X(t) over an energy barrier due to thermal or other fluctuations is usually associated with additive noise. We present a generalization of Kramers' rate for systems with multiplicative noise. We show that the expression commonly used in the literature for multiplicative noise is not correct, and we present results of numerical integrations of the Langevin equation for dX(t)/dt evolving in a quartic bistable potential which corroborate our claim.
doi_str_mv 10.1103/PhysRevE.94.012101
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815974668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1815974668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-b0361151df91f1b55e3e59c61fdcaf5a7a547deac45516c5122056ce53dc457e3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AUxBdRbKn9BzxIbnpJfC-7L9scpdQPLCii52W7eaGRpKm7SaX_vZV-nGYYZubwE-IaIUEEef--3IYP3sySXCWAKQKeiWGqNMQAJM9PXtFAjEP4BgDMINeYXopBqkkTaBwK-eptwz7cRt52HJWtj8I2dNyE6LfqllHT1121ritnu2rD0aqtAl-Ji9LWgccHHYmvx9nn9Dmevz29TB_msZNKd_ECZIZIWJQ5lrggYsmUuwzLwtmSrLakdMHWKSLMHGGaAmWOSRa7SLMcibv979q3Pz2HzjRVcFzXdsVtHwxOkHKtsmyyq6b7qvNtCJ5Ls_ZVY_3WIJh_XubIy-TK7HntRjeH_37RcHGaHOnIP6nvZwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815974668</pqid></control><display><type>article</type><title>Kramers' rate for systems with multiplicative noise</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Rosas, Alexandre ; Pinto, Italo'Ivo Lima Dias ; Lindenberg, Katja</creator><creatorcontrib>Rosas, Alexandre ; Pinto, Italo'Ivo Lima Dias ; Lindenberg, Katja</creatorcontrib><description>Kramers' rate for the passage of trajectories X(t) over an energy barrier due to thermal or other fluctuations is usually associated with additive noise. We present a generalization of Kramers' rate for systems with multiplicative noise. We show that the expression commonly used in the literature for multiplicative noise is not correct, and we present results of numerical integrations of the Langevin equation for dX(t)/dt evolving in a quartic bistable potential which corroborate our claim.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.94.012101</identifier><identifier>PMID: 27575071</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2016-07, Vol.94 (1-1), p.012101-012101, Article 012101</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-b0361151df91f1b55e3e59c61fdcaf5a7a547deac45516c5122056ce53dc457e3</citedby><cites>FETCH-LOGICAL-c347t-b0361151df91f1b55e3e59c61fdcaf5a7a547deac45516c5122056ce53dc457e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27575071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosas, Alexandre</creatorcontrib><creatorcontrib>Pinto, Italo'Ivo Lima Dias</creatorcontrib><creatorcontrib>Lindenberg, Katja</creatorcontrib><title>Kramers' rate for systems with multiplicative noise</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>Kramers' rate for the passage of trajectories X(t) over an energy barrier due to thermal or other fluctuations is usually associated with additive noise. We present a generalization of Kramers' rate for systems with multiplicative noise. We show that the expression commonly used in the literature for multiplicative noise is not correct, and we present results of numerical integrations of the Langevin equation for dX(t)/dt evolving in a quartic bistable potential which corroborate our claim.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AUxBdRbKn9BzxIbnpJfC-7L9scpdQPLCii52W7eaGRpKm7SaX_vZV-nGYYZubwE-IaIUEEef--3IYP3sySXCWAKQKeiWGqNMQAJM9PXtFAjEP4BgDMINeYXopBqkkTaBwK-eptwz7cRt52HJWtj8I2dNyE6LfqllHT1121ritnu2rD0aqtAl-Ji9LWgccHHYmvx9nn9Dmevz29TB_msZNKd_ECZIZIWJQ5lrggYsmUuwzLwtmSrLakdMHWKSLMHGGaAmWOSRa7SLMcibv979q3Pz2HzjRVcFzXdsVtHwxOkHKtsmyyq6b7qvNtCJ5Ls_ZVY_3WIJh_XubIy-TK7HntRjeH_37RcHGaHOnIP6nvZwM</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Rosas, Alexandre</creator><creator>Pinto, Italo'Ivo Lima Dias</creator><creator>Lindenberg, Katja</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201607</creationdate><title>Kramers' rate for systems with multiplicative noise</title><author>Rosas, Alexandre ; Pinto, Italo'Ivo Lima Dias ; Lindenberg, Katja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-b0361151df91f1b55e3e59c61fdcaf5a7a547deac45516c5122056ce53dc457e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosas, Alexandre</creatorcontrib><creatorcontrib>Pinto, Italo'Ivo Lima Dias</creatorcontrib><creatorcontrib>Lindenberg, Katja</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosas, Alexandre</au><au>Pinto, Italo'Ivo Lima Dias</au><au>Lindenberg, Katja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kramers' rate for systems with multiplicative noise</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2016-07</date><risdate>2016</risdate><volume>94</volume><issue>1-1</issue><spage>012101</spage><epage>012101</epage><pages>012101-012101</pages><artnum>012101</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>Kramers' rate for the passage of trajectories X(t) over an energy barrier due to thermal or other fluctuations is usually associated with additive noise. We present a generalization of Kramers' rate for systems with multiplicative noise. We show that the expression commonly used in the literature for multiplicative noise is not correct, and we present results of numerical integrations of the Langevin equation for dX(t)/dt evolving in a quartic bistable potential which corroborate our claim.</abstract><cop>United States</cop><pmid>27575071</pmid><doi>10.1103/PhysRevE.94.012101</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2016-07, Vol.94 (1-1), p.012101-012101, Article 012101
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_1815974668
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Kramers' rate for systems with multiplicative noise
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kramers'%20rate%20for%20systems%20with%20multiplicative%20noise&rft.jtitle=Physical%20review.%20E&rft.au=Rosas,%20Alexandre&rft.date=2016-07&rft.volume=94&rft.issue=1-1&rft.spage=012101&rft.epage=012101&rft.pages=012101-012101&rft.artnum=012101&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.94.012101&rft_dat=%3Cproquest_cross%3E1815974668%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-b0361151df91f1b55e3e59c61fdcaf5a7a547deac45516c5122056ce53dc457e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1815974668&rft_id=info:pmid/27575071&rfr_iscdi=true