Loading…
Kramers' rate for systems with multiplicative noise
Kramers' rate for the passage of trajectories X(t) over an energy barrier due to thermal or other fluctuations is usually associated with additive noise. We present a generalization of Kramers' rate for systems with multiplicative noise. We show that the expression commonly used in the lit...
Saved in:
Published in: | Physical review. E 2016-07, Vol.94 (1-1), p.012101-012101, Article 012101 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-b0361151df91f1b55e3e59c61fdcaf5a7a547deac45516c5122056ce53dc457e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-b0361151df91f1b55e3e59c61fdcaf5a7a547deac45516c5122056ce53dc457e3 |
container_end_page | 012101 |
container_issue | 1-1 |
container_start_page | 012101 |
container_title | Physical review. E |
container_volume | 94 |
creator | Rosas, Alexandre Pinto, Italo'Ivo Lima Dias Lindenberg, Katja |
description | Kramers' rate for the passage of trajectories X(t) over an energy barrier due to thermal or other fluctuations is usually associated with additive noise. We present a generalization of Kramers' rate for systems with multiplicative noise. We show that the expression commonly used in the literature for multiplicative noise is not correct, and we present results of numerical integrations of the Langevin equation for dX(t)/dt evolving in a quartic bistable potential which corroborate our claim. |
doi_str_mv | 10.1103/PhysRevE.94.012101 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815974668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1815974668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-b0361151df91f1b55e3e59c61fdcaf5a7a547deac45516c5122056ce53dc457e3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AUxBdRbKn9BzxIbnpJfC-7L9scpdQPLCii52W7eaGRpKm7SaX_vZV-nGYYZubwE-IaIUEEef--3IYP3sySXCWAKQKeiWGqNMQAJM9PXtFAjEP4BgDMINeYXopBqkkTaBwK-eptwz7cRt52HJWtj8I2dNyE6LfqllHT1121ritnu2rD0aqtAl-Ji9LWgccHHYmvx9nn9Dmevz29TB_msZNKd_ECZIZIWJQ5lrggYsmUuwzLwtmSrLakdMHWKSLMHGGaAmWOSRa7SLMcibv979q3Pz2HzjRVcFzXdsVtHwxOkHKtsmyyq6b7qvNtCJ5Ls_ZVY_3WIJh_XubIy-TK7HntRjeH_37RcHGaHOnIP6nvZwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815974668</pqid></control><display><type>article</type><title>Kramers' rate for systems with multiplicative noise</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Rosas, Alexandre ; Pinto, Italo'Ivo Lima Dias ; Lindenberg, Katja</creator><creatorcontrib>Rosas, Alexandre ; Pinto, Italo'Ivo Lima Dias ; Lindenberg, Katja</creatorcontrib><description>Kramers' rate for the passage of trajectories X(t) over an energy barrier due to thermal or other fluctuations is usually associated with additive noise. We present a generalization of Kramers' rate for systems with multiplicative noise. We show that the expression commonly used in the literature for multiplicative noise is not correct, and we present results of numerical integrations of the Langevin equation for dX(t)/dt evolving in a quartic bistable potential which corroborate our claim.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.94.012101</identifier><identifier>PMID: 27575071</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2016-07, Vol.94 (1-1), p.012101-012101, Article 012101</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-b0361151df91f1b55e3e59c61fdcaf5a7a547deac45516c5122056ce53dc457e3</citedby><cites>FETCH-LOGICAL-c347t-b0361151df91f1b55e3e59c61fdcaf5a7a547deac45516c5122056ce53dc457e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27575071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosas, Alexandre</creatorcontrib><creatorcontrib>Pinto, Italo'Ivo Lima Dias</creatorcontrib><creatorcontrib>Lindenberg, Katja</creatorcontrib><title>Kramers' rate for systems with multiplicative noise</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>Kramers' rate for the passage of trajectories X(t) over an energy barrier due to thermal or other fluctuations is usually associated with additive noise. We present a generalization of Kramers' rate for systems with multiplicative noise. We show that the expression commonly used in the literature for multiplicative noise is not correct, and we present results of numerical integrations of the Langevin equation for dX(t)/dt evolving in a quartic bistable potential which corroborate our claim.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AUxBdRbKn9BzxIbnpJfC-7L9scpdQPLCii52W7eaGRpKm7SaX_vZV-nGYYZubwE-IaIUEEef--3IYP3sySXCWAKQKeiWGqNMQAJM9PXtFAjEP4BgDMINeYXopBqkkTaBwK-eptwz7cRt52HJWtj8I2dNyE6LfqllHT1121ritnu2rD0aqtAl-Ji9LWgccHHYmvx9nn9Dmevz29TB_msZNKd_ECZIZIWJQ5lrggYsmUuwzLwtmSrLakdMHWKSLMHGGaAmWOSRa7SLMcibv979q3Pz2HzjRVcFzXdsVtHwxOkHKtsmyyq6b7qvNtCJ5Ls_ZVY_3WIJh_XubIy-TK7HntRjeH_37RcHGaHOnIP6nvZwM</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Rosas, Alexandre</creator><creator>Pinto, Italo'Ivo Lima Dias</creator><creator>Lindenberg, Katja</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201607</creationdate><title>Kramers' rate for systems with multiplicative noise</title><author>Rosas, Alexandre ; Pinto, Italo'Ivo Lima Dias ; Lindenberg, Katja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-b0361151df91f1b55e3e59c61fdcaf5a7a547deac45516c5122056ce53dc457e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosas, Alexandre</creatorcontrib><creatorcontrib>Pinto, Italo'Ivo Lima Dias</creatorcontrib><creatorcontrib>Lindenberg, Katja</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosas, Alexandre</au><au>Pinto, Italo'Ivo Lima Dias</au><au>Lindenberg, Katja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kramers' rate for systems with multiplicative noise</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2016-07</date><risdate>2016</risdate><volume>94</volume><issue>1-1</issue><spage>012101</spage><epage>012101</epage><pages>012101-012101</pages><artnum>012101</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>Kramers' rate for the passage of trajectories X(t) over an energy barrier due to thermal or other fluctuations is usually associated with additive noise. We present a generalization of Kramers' rate for systems with multiplicative noise. We show that the expression commonly used in the literature for multiplicative noise is not correct, and we present results of numerical integrations of the Langevin equation for dX(t)/dt evolving in a quartic bistable potential which corroborate our claim.</abstract><cop>United States</cop><pmid>27575071</pmid><doi>10.1103/PhysRevE.94.012101</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2016-07, Vol.94 (1-1), p.012101-012101, Article 012101 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_1815974668 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Kramers' rate for systems with multiplicative noise |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kramers'%20rate%20for%20systems%20with%20multiplicative%20noise&rft.jtitle=Physical%20review.%20E&rft.au=Rosas,%20Alexandre&rft.date=2016-07&rft.volume=94&rft.issue=1-1&rft.spage=012101&rft.epage=012101&rft.pages=012101-012101&rft.artnum=012101&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.94.012101&rft_dat=%3Cproquest_cross%3E1815974668%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-b0361151df91f1b55e3e59c61fdcaf5a7a547deac45516c5122056ce53dc457e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1815974668&rft_id=info:pmid/27575071&rfr_iscdi=true |