Loading…

Dark matter and dark energy from a Bose-Einstein condensate

We show that dark matter consisting of bosons of mass of about 1 eV or less has a critical temperature exceeding the temperature of the Universe at all times, and hence would have formed a Bose-Einstein condensate at very early epochs. We also show that the wavefunction of this condensate, via the q...

Full description

Saved in:
Bibliographic Details
Published in:Classical and quantum gravity 2015-05, Vol.32 (10), p.105003-105008
Main Authors: Das, Saurya, Bhaduri, Rajat K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-24b2f1339eeb74c7173fd28024d06ac148d156d9cd26c9e0768c0fc4893f66c53
cites cdi_FETCH-LOGICAL-c397t-24b2f1339eeb74c7173fd28024d06ac148d156d9cd26c9e0768c0fc4893f66c53
container_end_page 105008
container_issue 10
container_start_page 105003
container_title Classical and quantum gravity
container_volume 32
creator Das, Saurya
Bhaduri, Rajat K
description We show that dark matter consisting of bosons of mass of about 1 eV or less has a critical temperature exceeding the temperature of the Universe at all times, and hence would have formed a Bose-Einstein condensate at very early epochs. We also show that the wavefunction of this condensate, via the quantum potential it produces, gives rise to a cosmological constant that may account for the correct dark energy content of our Universe. We argue that massive gravitons or axions are viable candidates for these constituents. In the far future this condensate is all that remains of our Universe.
doi_str_mv 10.1088/0264-9381/32/10/105003
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815998950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1798733725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-24b2f1339eeb74c7173fd28024d06ac148d156d9cd26c9e0768c0fc4893f66c53</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QfboZW0-dvOBJ631Awpe9BzSZFK2tsk22R76792loghCYWCY4eEd5kHomuBbgqWcYMqrUjFJJoxOCO6rxpidoBFhnJScSXqKRj_QObrIeYUxIZLQEbp7NOmz2Jiug1SY4Ao3zBAgLfeFT3FTmOIhZihnTcgdNKGwMTgI2XRwic68WWe4-u5j9PE0e5--lPO359fp_by0TImupNWCesKYAliIygoimHdUYlo5zI0llXSk5k5ZR7lVgAWXFntbScU857ZmY3RzyG1T3O4gd3rTZAvrtQkQd1n3n9RKSVXj46hQUjAm6JDKD6hNMecEXrep2Zi01wTrQawenOnBmWb0sBzE_t5oYqtXcZdC_7y22-UfTLfO9yj9Bz2S_wX1BYUy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798733725</pqid></control><display><type>article</type><title>Dark matter and dark energy from a Bose-Einstein condensate</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Das, Saurya ; Bhaduri, Rajat K</creator><creatorcontrib>Das, Saurya ; Bhaduri, Rajat K</creatorcontrib><description>We show that dark matter consisting of bosons of mass of about 1 eV or less has a critical temperature exceeding the temperature of the Universe at all times, and hence would have formed a Bose-Einstein condensate at very early epochs. We also show that the wavefunction of this condensate, via the quantum potential it produces, gives rise to a cosmological constant that may account for the correct dark energy content of our Universe. We argue that massive gravitons or axions are viable candidates for these constituents. In the far future this condensate is all that remains of our Universe.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/0264-9381/32/10/105003</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>axions ; Bose-Einstein condensate ; Bose-Einstein condensates ; Bosons ; Condensates ; Cosmological constant ; Dark energy ; Dark matter ; gravitons ; Quantum gravity ; quantum potential ; Universe</subject><ispartof>Classical and quantum gravity, 2015-05, Vol.32 (10), p.105003-105008</ispartof><rights>2015 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-24b2f1339eeb74c7173fd28024d06ac148d156d9cd26c9e0768c0fc4893f66c53</citedby><cites>FETCH-LOGICAL-c397t-24b2f1339eeb74c7173fd28024d06ac148d156d9cd26c9e0768c0fc4893f66c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Das, Saurya</creatorcontrib><creatorcontrib>Bhaduri, Rajat K</creatorcontrib><title>Dark matter and dark energy from a Bose-Einstein condensate</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>We show that dark matter consisting of bosons of mass of about 1 eV or less has a critical temperature exceeding the temperature of the Universe at all times, and hence would have formed a Bose-Einstein condensate at very early epochs. We also show that the wavefunction of this condensate, via the quantum potential it produces, gives rise to a cosmological constant that may account for the correct dark energy content of our Universe. We argue that massive gravitons or axions are viable candidates for these constituents. In the far future this condensate is all that remains of our Universe.</description><subject>axions</subject><subject>Bose-Einstein condensate</subject><subject>Bose-Einstein condensates</subject><subject>Bosons</subject><subject>Condensates</subject><subject>Cosmological constant</subject><subject>Dark energy</subject><subject>Dark matter</subject><subject>gravitons</subject><subject>Quantum gravity</subject><subject>quantum potential</subject><subject>Universe</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QfboZW0-dvOBJ631Awpe9BzSZFK2tsk22R76792loghCYWCY4eEd5kHomuBbgqWcYMqrUjFJJoxOCO6rxpidoBFhnJScSXqKRj_QObrIeYUxIZLQEbp7NOmz2Jiug1SY4Ao3zBAgLfeFT3FTmOIhZihnTcgdNKGwMTgI2XRwic68WWe4-u5j9PE0e5--lPO359fp_by0TImupNWCesKYAliIygoimHdUYlo5zI0llXSk5k5ZR7lVgAWXFntbScU857ZmY3RzyG1T3O4gd3rTZAvrtQkQd1n3n9RKSVXj46hQUjAm6JDKD6hNMecEXrep2Zi01wTrQawenOnBmWb0sBzE_t5oYqtXcZdC_7y22-UfTLfO9yj9Bz2S_wX1BYUy</recordid><startdate>20150521</startdate><enddate>20150521</enddate><creator>Das, Saurya</creator><creator>Bhaduri, Rajat K</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150521</creationdate><title>Dark matter and dark energy from a Bose-Einstein condensate</title><author>Das, Saurya ; Bhaduri, Rajat K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-24b2f1339eeb74c7173fd28024d06ac148d156d9cd26c9e0768c0fc4893f66c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>axions</topic><topic>Bose-Einstein condensate</topic><topic>Bose-Einstein condensates</topic><topic>Bosons</topic><topic>Condensates</topic><topic>Cosmological constant</topic><topic>Dark energy</topic><topic>Dark matter</topic><topic>gravitons</topic><topic>Quantum gravity</topic><topic>quantum potential</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Saurya</creatorcontrib><creatorcontrib>Bhaduri, Rajat K</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Saurya</au><au>Bhaduri, Rajat K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dark matter and dark energy from a Bose-Einstein condensate</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2015-05-21</date><risdate>2015</risdate><volume>32</volume><issue>10</issue><spage>105003</spage><epage>105008</epage><pages>105003-105008</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>We show that dark matter consisting of bosons of mass of about 1 eV or less has a critical temperature exceeding the temperature of the Universe at all times, and hence would have formed a Bose-Einstein condensate at very early epochs. We also show that the wavefunction of this condensate, via the quantum potential it produces, gives rise to a cosmological constant that may account for the correct dark energy content of our Universe. We argue that massive gravitons or axions are viable candidates for these constituents. In the far future this condensate is all that remains of our Universe.</abstract><pub>IOP Publishing</pub><doi>10.1088/0264-9381/32/10/105003</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0264-9381
ispartof Classical and quantum gravity, 2015-05, Vol.32 (10), p.105003-105008
issn 0264-9381
1361-6382
language eng
recordid cdi_proquest_miscellaneous_1815998950
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects axions
Bose-Einstein condensate
Bose-Einstein condensates
Bosons
Condensates
Cosmological constant
Dark energy
Dark matter
gravitons
Quantum gravity
quantum potential
Universe
title Dark matter and dark energy from a Bose-Einstein condensate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dark%20matter%20and%20dark%20energy%20from%20a%20Bose-Einstein%20condensate&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Das,%20Saurya&rft.date=2015-05-21&rft.volume=32&rft.issue=10&rft.spage=105003&rft.epage=105008&rft.pages=105003-105008&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/0264-9381/32/10/105003&rft_dat=%3Cproquest_iop_j%3E1798733725%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-24b2f1339eeb74c7173fd28024d06ac148d156d9cd26c9e0768c0fc4893f66c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1798733725&rft_id=info:pmid/&rfr_iscdi=true