Loading…
Dark matter and dark energy from a Bose-Einstein condensate
We show that dark matter consisting of bosons of mass of about 1 eV or less has a critical temperature exceeding the temperature of the Universe at all times, and hence would have formed a Bose-Einstein condensate at very early epochs. We also show that the wavefunction of this condensate, via the q...
Saved in:
Published in: | Classical and quantum gravity 2015-05, Vol.32 (10), p.105003-105008 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c397t-24b2f1339eeb74c7173fd28024d06ac148d156d9cd26c9e0768c0fc4893f66c53 |
---|---|
cites | cdi_FETCH-LOGICAL-c397t-24b2f1339eeb74c7173fd28024d06ac148d156d9cd26c9e0768c0fc4893f66c53 |
container_end_page | 105008 |
container_issue | 10 |
container_start_page | 105003 |
container_title | Classical and quantum gravity |
container_volume | 32 |
creator | Das, Saurya Bhaduri, Rajat K |
description | We show that dark matter consisting of bosons of mass of about 1 eV or less has a critical temperature exceeding the temperature of the Universe at all times, and hence would have formed a Bose-Einstein condensate at very early epochs. We also show that the wavefunction of this condensate, via the quantum potential it produces, gives rise to a cosmological constant that may account for the correct dark energy content of our Universe. We argue that massive gravitons or axions are viable candidates for these constituents. In the far future this condensate is all that remains of our Universe. |
doi_str_mv | 10.1088/0264-9381/32/10/105003 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815998950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1798733725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-24b2f1339eeb74c7173fd28024d06ac148d156d9cd26c9e0768c0fc4893f66c53</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QfboZW0-dvOBJ631Awpe9BzSZFK2tsk22R76792loghCYWCY4eEd5kHomuBbgqWcYMqrUjFJJoxOCO6rxpidoBFhnJScSXqKRj_QObrIeYUxIZLQEbp7NOmz2Jiug1SY4Ao3zBAgLfeFT3FTmOIhZihnTcgdNKGwMTgI2XRwic68WWe4-u5j9PE0e5--lPO359fp_by0TImupNWCesKYAliIygoimHdUYlo5zI0llXSk5k5ZR7lVgAWXFntbScU857ZmY3RzyG1T3O4gd3rTZAvrtQkQd1n3n9RKSVXj46hQUjAm6JDKD6hNMecEXrep2Zi01wTrQawenOnBmWb0sBzE_t5oYqtXcZdC_7y22-UfTLfO9yj9Bz2S_wX1BYUy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798733725</pqid></control><display><type>article</type><title>Dark matter and dark energy from a Bose-Einstein condensate</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Das, Saurya ; Bhaduri, Rajat K</creator><creatorcontrib>Das, Saurya ; Bhaduri, Rajat K</creatorcontrib><description>We show that dark matter consisting of bosons of mass of about 1 eV or less has a critical temperature exceeding the temperature of the Universe at all times, and hence would have formed a Bose-Einstein condensate at very early epochs. We also show that the wavefunction of this condensate, via the quantum potential it produces, gives rise to a cosmological constant that may account for the correct dark energy content of our Universe. We argue that massive gravitons or axions are viable candidates for these constituents. In the far future this condensate is all that remains of our Universe.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/0264-9381/32/10/105003</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>axions ; Bose-Einstein condensate ; Bose-Einstein condensates ; Bosons ; Condensates ; Cosmological constant ; Dark energy ; Dark matter ; gravitons ; Quantum gravity ; quantum potential ; Universe</subject><ispartof>Classical and quantum gravity, 2015-05, Vol.32 (10), p.105003-105008</ispartof><rights>2015 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-24b2f1339eeb74c7173fd28024d06ac148d156d9cd26c9e0768c0fc4893f66c53</citedby><cites>FETCH-LOGICAL-c397t-24b2f1339eeb74c7173fd28024d06ac148d156d9cd26c9e0768c0fc4893f66c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Das, Saurya</creatorcontrib><creatorcontrib>Bhaduri, Rajat K</creatorcontrib><title>Dark matter and dark energy from a Bose-Einstein condensate</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>We show that dark matter consisting of bosons of mass of about 1 eV or less has a critical temperature exceeding the temperature of the Universe at all times, and hence would have formed a Bose-Einstein condensate at very early epochs. We also show that the wavefunction of this condensate, via the quantum potential it produces, gives rise to a cosmological constant that may account for the correct dark energy content of our Universe. We argue that massive gravitons or axions are viable candidates for these constituents. In the far future this condensate is all that remains of our Universe.</description><subject>axions</subject><subject>Bose-Einstein condensate</subject><subject>Bose-Einstein condensates</subject><subject>Bosons</subject><subject>Condensates</subject><subject>Cosmological constant</subject><subject>Dark energy</subject><subject>Dark matter</subject><subject>gravitons</subject><subject>Quantum gravity</subject><subject>quantum potential</subject><subject>Universe</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QfboZW0-dvOBJ631Awpe9BzSZFK2tsk22R76792loghCYWCY4eEd5kHomuBbgqWcYMqrUjFJJoxOCO6rxpidoBFhnJScSXqKRj_QObrIeYUxIZLQEbp7NOmz2Jiug1SY4Ao3zBAgLfeFT3FTmOIhZihnTcgdNKGwMTgI2XRwic68WWe4-u5j9PE0e5--lPO359fp_by0TImupNWCesKYAliIygoimHdUYlo5zI0llXSk5k5ZR7lVgAWXFntbScU857ZmY3RzyG1T3O4gd3rTZAvrtQkQd1n3n9RKSVXj46hQUjAm6JDKD6hNMecEXrep2Zi01wTrQawenOnBmWb0sBzE_t5oYqtXcZdC_7y22-UfTLfO9yj9Bz2S_wX1BYUy</recordid><startdate>20150521</startdate><enddate>20150521</enddate><creator>Das, Saurya</creator><creator>Bhaduri, Rajat K</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150521</creationdate><title>Dark matter and dark energy from a Bose-Einstein condensate</title><author>Das, Saurya ; Bhaduri, Rajat K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-24b2f1339eeb74c7173fd28024d06ac148d156d9cd26c9e0768c0fc4893f66c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>axions</topic><topic>Bose-Einstein condensate</topic><topic>Bose-Einstein condensates</topic><topic>Bosons</topic><topic>Condensates</topic><topic>Cosmological constant</topic><topic>Dark energy</topic><topic>Dark matter</topic><topic>gravitons</topic><topic>Quantum gravity</topic><topic>quantum potential</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Saurya</creatorcontrib><creatorcontrib>Bhaduri, Rajat K</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Saurya</au><au>Bhaduri, Rajat K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dark matter and dark energy from a Bose-Einstein condensate</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2015-05-21</date><risdate>2015</risdate><volume>32</volume><issue>10</issue><spage>105003</spage><epage>105008</epage><pages>105003-105008</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>We show that dark matter consisting of bosons of mass of about 1 eV or less has a critical temperature exceeding the temperature of the Universe at all times, and hence would have formed a Bose-Einstein condensate at very early epochs. We also show that the wavefunction of this condensate, via the quantum potential it produces, gives rise to a cosmological constant that may account for the correct dark energy content of our Universe. We argue that massive gravitons or axions are viable candidates for these constituents. In the far future this condensate is all that remains of our Universe.</abstract><pub>IOP Publishing</pub><doi>10.1088/0264-9381/32/10/105003</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-9381 |
ispartof | Classical and quantum gravity, 2015-05, Vol.32 (10), p.105003-105008 |
issn | 0264-9381 1361-6382 |
language | eng |
recordid | cdi_proquest_miscellaneous_1815998950 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | axions Bose-Einstein condensate Bose-Einstein condensates Bosons Condensates Cosmological constant Dark energy Dark matter gravitons Quantum gravity quantum potential Universe |
title | Dark matter and dark energy from a Bose-Einstein condensate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dark%20matter%20and%20dark%20energy%20from%20a%20Bose-Einstein%20condensate&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Das,%20Saurya&rft.date=2015-05-21&rft.volume=32&rft.issue=10&rft.spage=105003&rft.epage=105008&rft.pages=105003-105008&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/0264-9381/32/10/105003&rft_dat=%3Cproquest_iop_j%3E1798733725%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-24b2f1339eeb74c7173fd28024d06ac148d156d9cd26c9e0768c0fc4893f66c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1798733725&rft_id=info:pmid/&rfr_iscdi=true |