Loading…
Unsteady pressure measurements of decelerated swirling flow in a discharge cone at lower runner speeds
The decelerated swirling flow in the draft tube cone of hydraulic turbines (especially turbines with fixed blades) is responsible for self-induced instabilities which generates pressure pulsations that hinder the turbine operation. An experimental test rig was developed in order to investigate the f...
Saved in:
Published in: | IOP conference series. Earth and environmental science 2014-01, Vol.22 (3), p.32008-32017 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The decelerated swirling flow in the draft tube cone of hydraulic turbines (especially turbines with fixed blades) is responsible for self-induced instabilities which generates pressure pulsations that hinder the turbine operation. An experimental test rig was developed in order to investigate the flow instabilities. A new method was implemented to slow down the runner using a magneto rheological brake in order to be extended the flow regimes investigated. As a result, the experimental investigations are performed for 7 operating regimes in order to quantify the flow behaviour from part load operation to overload operation. The unsteady pressure measurements are carried out on 4 levels in the cone. The unsteady pressure measurements on the cone wall consist in quantifying of three aspects: i) the pressure recovery coefficient obtained based on mean pressure provides the energetic assessment on the draft tube cone; ii) the unsteady quantities (dominant amplitude and frequency) are determined revealing the dynamic behaviour; iii) the plunging and rotating components of the pressure pulsation. As a result, this new method helps us to investigate in detail the flow instability for different operating regimes and allows investigating various flow control solutions. |
---|---|
ISSN: | 1755-1307 1755-1315 |
DOI: | 10.1088/1755-1315/22/3/032008 |