Loading…

Plastic wrinkling prediction in thin-walled part forming process: A review

The precision forming of thin-walled components has been urgently needed in aviation and aerospace field. However, the wrinkling induced by the compressive instability is one of the major defects in thin-walled part forming. The initiation and growth of the wrinkles are interac- tively affected by m...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of aeronautics 2016-02, Vol.29 (1), p.1-14
Main Authors: Liu, Nan, Yang, He, Li, Heng, Yan, Siliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The precision forming of thin-walled components has been urgently needed in aviation and aerospace field. However, the wrinkling induced by the compressive instability is one of the major defects in thin-walled part forming. The initiation and growth of the wrinkles are interac- tively affected by many factors such as stress states, mechanical properties of the material, geometry of the workpiece and boundary conditions. Especially when the forming process involves compli- cated boundary conditions such as multi-dies constrains, the perturbation of clearances between workpiece and dies and the contact conditions changing in time and space, etc., the predication of the wrinkling is further complicated. In this paper, the cu.rent prediction methods were summa- rized including the static equilibrium method, the energy method, the initial imperfection method, the eigenvalue buckling analysis method, the static-implicit finite element method and the dynamic- explicit finite element method. Then, a systematical comparison and summary of these methods in terms of their advantages and limitations are presented. By using a combination of explicit FE method, initial imperfection and energy conservation, a hybrid method is recommended to predict plastic wrinkling in thin-walled part forming. Finally, considering the urgent requirements of com- plex thin-walled structures' part in aviation and aerospace field, the trends and challenges in wrin- kling prediction under complicated boundary conditions are presented.
ISSN:1000-9361
DOI:10.1016/j.cja.2015.09.004